Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Bi-invariant Dissimilarity Measures for Sample Distributions in Lie Groups (2402.12901v1)

Published 20 Feb 2024 in stat.ME, math.ST, and stat.TH

Abstract: Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many applications to assess the differences between the sets in terms of their distributions. Indices for this task are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most non-compact and non-commutative groups. We show here that if one considers an affine connection structure instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling $T2$ statistic, Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consistent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee configurations and epidemiological shape data. Significant differences are revealed in both cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com