Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Lowest-lying ${\frac{1}{2}}^-$ and ${\frac{3}{2}}^-$ $Λ_{Q}$ resonances: from the strange to the bottom sectors (2402.12726v1)

Published 20 Feb 2024 in hep-ph

Abstract: We present a detailed study of the lowest-lying ${\frac{1}{2}}-$ and ${\frac{3}{2}}-$ $\Lambda_{Q}$ resonances both in the heavy quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the $\Lambda_b(5912)$ [$JP=1/2-$], $\Lambda_b(5920)$ [$JP=3/2-$] and the $\Lambda_c(2625)$ [$JP=3/2-$], and the $\Lambda(1520)$ [$JP=3/2-$] admitting larger breaking corrections, are heavy-quark spin-flavor siblings. They can be seen as dressed quark-model states with $\Sigma_{Q}{(*)}\pi$ molecular components of the order of 30\%. The ${JP=\frac{1}{2}}-$ $\Lambda_c(2595)$ has, however, a higher molecular probability of at least $50$\%, and even values greater than 70\% can be easily accommodated. This is because it is located almost on top of the threshold of the $\Sigma_c\pi$ pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity $1-$ as in the $\Lambda_b(5912)$, $\Lambda_b(5920)$ and $\Lambda_c(2625)$, the $\Lambda_c(2595)$ should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the $\Lambda(1405)$ chiral two-pole pattern does not have analogs in the $\frac{1}{2}-$ charmed and bottomed sectors, because the $ND{(*)}$ and $N\overline{B}{}{(*)} $ channels do not play for heavy quarks the decisive role that the $N \overline{K}$ does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two $\Lambda_b(6070)$ and two $\Lambda_c(2765)$ heavy-quark spin and flavor sibling odd parity states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (158)
  1. doi:10.1103/PhysRevLett.66.1130.
  2. doi:10.1103/PhysRevD.45.R2188.
  3. arXiv:hep-ph/9306320, doi:10.1016/0370-1573(94)90091-4.
  4. doi:10.1093/ptep/ptac097.
  5. arXiv:1210.3485, doi:10.1103/PhysRevC.87.035202.
  6. doi:10.1103/physrevd.34.2809.
  7. arXiv:0711.2492, doi:10.1142/S0217751X08041219.
  8. arXiv:0705.2957, doi:10.1016/j.physletb.2007.11.037.
  9. arXiv:hep-ph/0703257, doi:10.1088/0954-3899/34/5/014.
  10. arXiv:0804.1575, doi:10.1016/j.aop.2008.05.003.
  11. arXiv:1510.01067, doi:10.1103/PhysRevD.92.114029.
  12. arXiv:1205.3452, doi:10.1103/PhysRevLett.109.172003.
  13. arXiv:2002.05112, doi:10.1007/JHEP06(2020)136.
  14. arXiv:2001.06533, doi:10.1016/j.physletb.2020.135345.
  15. arXiv:1308.1760, doi:10.1103/PhysRevD.88.071101.
  16. doi:10.1103/PhysRevLett.74.3331.
  17. doi:10.1016/0370-2693(95)01458-6.
  18. doi:10.1016/S0370-2693(97)00503-0.
  19. arXiv:1105.5995, doi:10.1103/PhysRevD.84.012003.
  20. doi:10.1016/0370-2693(91)90423-N.
  21. arXiv:1609.01085, doi:10.1103/PhysRevD.95.014023.
  22. arXiv:1704.00464, doi:10.1103/PhysRevD.95.114018.
  23. arXiv:nucl-th/9505043, doi:10.1016/0375-9474(95)00362-5.
  24. arXiv:nucl-th/9711022, doi:10.1016/S0375-9474(98)00170-5.
  25. arXiv:hep-ph/0011146, doi:10.1016/S0370-2693(01)00078-8.
  26. arXiv:hep-ph/0210311, doi:10.1103/PhysRevD.67.076009.
  27. doi:10.1016/0003-4916(84)90242-2.
  28. doi:10.1016/0550-3213(85)90492-4.
  29. arXiv:hep-ph/9502366, doi:10.1088/0034-4885/58/6/001.
  30. doi:10.1103/PhysRevLett.61.2526.
  31. doi:10.1016/0370-2693(90)90109-J.
  32. arXiv:hep-ph/9301276, doi:10.1103/PhysRevD.47.4883.
  33. arXiv:hep-ph/9604416, doi:10.1103/PhysRevD.56.3057.
  34. arXiv:hep-ph/9701389, doi:10.1103/PhysRevD.55.5613.
  35. arXiv:hep-ph/9803242, doi:10.1103/PhysRevLett.80.3452.
  36. arXiv:hep-ph/9702314, doi:10.1016/S0375-9474(97)00160-7.
  37. arXiv:nucl-th/9807035, doi:10.1016/S0370-2693(99)00461-X.
  38. arXiv:hep-ph/9804209, doi:10.1103/PhysRevD.59.074001.
  39. arXiv:hep-ph/9809337, doi:10.1103/PhysRevD.60.074023.
  40. arXiv:hep-ph/9907469, doi:10.1016/S0375-9474(00)00321-3.
  41. arXiv:hep-ph/0008034, doi:10.1103/PhysRevD.63.076001.
  42. arXiv:hep-ph/0006043, doi:10.1016/S0370-2693(00)00761-9.
  43. arXiv:hep-ph/0109077, doi:10.1103/PhysRevD.65.036002.
  44. arXiv:hep-ph/0109056, doi:10.1103/PhysRevD.65.054009.
  45. arXiv:nucl-th/0105042, doi:10.1016/S0375-9474(01)01312-4.
  46. arXiv:hep-ph/0104307, doi:10.1103/PhysRevD.64.116008.
  47. arXiv:nucl-th/0212026, doi:10.1103/PhysRevC.68.018201.
  48. arXiv:nucl-th/0305101, doi:10.1016/j.physletb.2004.01.066.
  49. arXiv:nucl-th/0307039, doi:10.1016/j.nuclphysa.2003.11.009.
  50. arXiv:nucl-th/0303062, doi:10.1016/S0375-9474(03)01598-7.
  51. arXiv:nucl-th/0305100, doi:10.1016/j.physletb.2003.11.073.
  52. arXiv:nucl-th/0407025, doi:10.1016/j.nuclphysa.2005.01.006.
  53. arXiv:hep-ph/0505239, doi:10.1140/epja/i2005-10079-1.
  54. arXiv:hep-ph/0503273, doi:10.1103/PhysRevD.72.014002.
  55. arXiv:0712.2763, doi:10.1103/PhysRevD.77.056006.
  56. arXiv:0711.3536, doi:10.1103/PhysRevD.77.034001.
  57. arXiv:0712.1613, doi:10.1103/PhysRevC.77.035204.
  58. arXiv:0801.2871, doi:10.1103/PhysRevLett.100.152001.
  59. arXiv:0803.2550, doi:10.1103/PhysRevC.78.025203.
  60. arXiv:0801.4929, doi:10.1103/PhysRevLett.101.252002.
  61. arXiv:1001.5237, doi:10.1103/PhysRevD.81.054035.
  62. arXiv:1005.0956, doi:10.1103/PhysRevD.83.016007.
  63. arXiv:1012.2233, doi:10.1016/j.physletb.2011.02.008.
  64. arXiv:1107.3247, doi:10.1103/PhysRevD.84.096002.
  65. arXiv:1104.4474, doi:10.1016/j.ppnp.2011.07.002.
  66. arXiv:1201.6549, doi:10.1016/j.nuclphysa.2012.01.029.
  67. arXiv:1411.7884, doi:10.1140/epja/i2015-15030-3.
  68. arXiv:1407.3750, doi:10.1103/PhysRevD.90.114020.
  69. arXiv:1510.00653, doi:10.1016/j.physrep.2016.09.001.
  70. arXiv:1602.08852, doi:10.1016/j.nuclphysa.2016.04.013.
  71. arXiv:2209.02471, doi:10.1103/PhysRevLett.130.071902.
  72. arXiv:hep-ph/0309292, doi:10.1103/PhysRevLett.92.102001.
  73. arXiv:hep-ph/0610397, doi:10.1103/PhysRevLett.97.242002.
  74. arXiv:hep-ph/0605059, doi:10.1103/PhysRevD.74.036004.
  75. arXiv:0712.3347, doi:10.1103/PhysRevD.77.056010.
  76. arXiv:0804.1210, doi:10.1016/j.nuclphysa.2008.05.014.
  77. arXiv:0811.1941, doi:10.1140/epja/i2008-10689-y.
  78. arXiv:0904.4344, doi:10.1103/PhysRevD.80.045023.
  79. arXiv:0904.4590, doi:10.1016/j.physletb.2009.08.021.
  80. arXiv:2209.06230, doi:10.1051/epjconf/202227107005.
  81. arXiv:1109.6716, doi:10.1103/PhysRevLett.108.112001.
  82. arXiv:1301.4318, doi:10.1103/PhysRevD.87.074504.
  83. arXiv:1411.3402, doi:10.1103/PhysRevLett.114.132002.
  84. arXiv:1607.05856, doi:10.1103/PhysRevD.95.014506.
  85. arXiv:1609.01889, doi:10.1103/PhysRevD.94.114518.
  86. arXiv:1512.05831, doi:10.1103/PhysRevD.94.079901.
  87. arXiv:2010.01270, doi:10.1016/j.physletb.2021.136473.
  88. arXiv:hep-ph/9605342, doi:10.1016/S0370-1573(96)00027-0.
  89. arXiv:1409.3133, doi:10.1103/PhysRevD.92.014036.
  90. arXiv:1603.06316, doi:10.1088/0253-6102/65/5/593.
  91. arXiv:1603.09230, doi:10.1016/j.physletb.2016.04.033.
  92. arXiv:nucl-th/0404064, doi:10.1103/PhysRevC.70.025203.
  93. arXiv:hep-ph/0507071, doi:10.1016/j.nuclphysa.2005.08.022.
  94. arXiv:hep-ph/0607257, doi:10.1103/PhysRevC.74.065201.
  95. arXiv:hep-ph/0601249, doi:10.1016/j.nuclphysa.2006.07.004.
  96. arXiv:0907.5316, doi:10.1103/PhysRevC.80.055206.
  97. arXiv:0807.2969, doi:10.1103/PhysRevD.79.054004.
  98. arXiv:1202.2239, doi:10.1103/PhysRevD.85.114032.
  99. arXiv:hep-ph/0505233, doi:10.1103/PhysRevD.74.034025.
  100. arXiv:1104.2737, doi:10.1103/PhysRevD.84.056017.
  101. arXiv:1907.05747, doi:10.1103/PhysRevD.101.014018.
  102. arXiv:1210.4755, doi:10.1103/PhysRevD.87.034032.
  103. arXiv:1302.6938, doi:10.1103/PhysRevD.87.074034.
  104. arXiv:1712.00327, doi:10.1140/epjc/s10052-018-5597-3.
  105. arXiv:1703.04639, doi:10.1103/PhysRevLett.118.182001.
  106. arXiv:1911.06089, doi:10.1140/epjc/s10052-019-7568-8.
  107. arXiv:1805.09418, doi:10.1103/PhysRevLett.121.072002.
  108. arXiv:1712.03612, doi:10.1140/epjc/s10052-018-5720-5.
  109. arXiv:1402.5293, doi:10.1140/epja/i2015-15016-1.
  110. doi:10.1103/PhysRevLett.54.1215.
  111. doi:10.1016/0370-1573(88)90019-1.
  112. doi:10.1016/0370-1573(88)90090-7.
  113. arXiv:1304.5368, doi:10.1103/PhysRevD.88.056012.
  114. arXiv:1710.04231, doi:10.1103/PhysRevD.97.094035.
  115. arXiv:1711.10623, doi:10.1016/j.nuclphysb.2018.03.008.
  116. arXiv:1803.03268, doi:10.1103/PhysRevD.98.094022.
  117. arXiv:1811.11738, doi:10.1140/epjc/s10052-019-6665-z.
  118. arXiv:1903.11911, doi:10.1140/epjc/s10052-019-6929-7.
  119. arXiv:1001.0369, doi:10.1140/epja/i2010-10929-7.
  120. arXiv:1606.03239, doi:10.1140/epjc/s10052-016-4413-1.
  121. doi:10.1016/0550-3213(93)90331-I.
  122. arXiv:hep-ph/9711257, doi:10.1103/PhysRevD.57.5620.
  123. arXiv:hep-ph/0105148, doi:10.1016/S0375-9474(01)01202-7.
  124. arXiv:nucl-th/0503030, doi:10.1103/PhysRevC.72.035201.
  125. arXiv:2103.08775, doi:10.1103/PhysRevD.103.094516.
  126. arXiv:2105.09330, doi:10.1103/PhysRevD.105.016027.
  127. arXiv:2207.10529, doi:10.1103/PhysRevD.106.055039.
  128. arXiv:2107.13140, doi:10.1103/PhysRevD.105.054511.
  129. arXiv:1611.07334, doi:10.1103/PhysRevD.95.014015.
  130. arXiv:1801.08367, doi:10.1007/JHEP06(2018)155.
  131. arXiv:1807.11300, doi:10.1103/PhysRevD.98.053003.
  132. arXiv:2207.02109, doi:10.1103/PhysRevD.106.114020.
  133. arXiv:1612.07782, doi:10.1140/epjc/s10052-017-4735-7.
  134. arXiv:1805.07104, doi:10.1140/epjc/s10052-018-6176-3.
  135. doi:10.1103/PhysRev.130.776.
  136. doi:10.1103/PhysRev.137.B672.
  137. arXiv:0911.4407, doi:10.1103/PhysRevD.81.014029.
  138. arXiv:1506.04235, doi:10.1103/PhysRevD.92.034011.
  139. arXiv:2203.04864, doi:10.1140/epjc/s10052-022-10695-1.
  140. arXiv:2201.04414, doi:10.1140/epja/s10050-022-00753-3.
  141. arXiv:2205.08470, doi:10.1103/PhysRevC.106.015205.
  142. arXiv:hep-ex/0010080, doi:10.1103/PhysRevLett.86.4479.
  143. arXiv:1910.03318, doi:10.1103/PhysRevD.100.094032.
  144. arXiv:1908.04622, doi:10.1103/PhysRevD.100.114035.
  145. arXiv:1908.00223, doi:10.1103/PhysRevD.100.054013.
  146. arXiv:1907.13598, doi:10.1103/PhysRevLett.123.152001.
  147. arXiv:1105.0583, doi:10.1103/PhysRevD.84.014025.
  148. arXiv:0905.0402, doi:10.1103/PhysRevD.80.014003.
  149. arXiv:1111.6241, doi:10.1103/PhysRevD.85.011501.
  150. arXiv:1210.5431, doi:10.1103/PhysRevD.87.076006.
  151. arXiv:1305.4487, doi:10.1016/j.physletb.2013.10.056.
  152. arXiv:1303.6608, doi:10.1103/PhysRevD.88.054007.
  153. arXiv:1205.6606, doi:10.1103/PhysRevD.86.034003.
  154. doi:10.1016/0370-2693(93)91598-H.
  155. arXiv:1610.06727, doi:10.1016/j.physletb.2017.02.036.
  156. arXiv:1712.07957, doi:10.1103/PhysRevD.98.094018.
  157. arXiv:hep-ph/0610217, doi:10.1103/PhysRevD.75.014017.
  158. arXiv:2307.11631, doi:10.1103/PhysRevD.108.L111502.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com