Axion-Like Particles in Radiative Quarkonia Decays (2402.12454v1)
Abstract: Radiative quarkonia decays offer an ideal setting for probing Axion-Like Particle (ALP) interactions. This paper provides a comprehensive review of ALP production mechanisms through the $e+ e- \to \gamma\,a$ process at B- and Charm-factories, alongside an analysis of potential ALP decay channels. We derive constraints on ALP couplings to Standard Model (SM) fields, based on recent experimental results on quarkonia decays by the Belle II and BESIII collaborations. The analysis distinguishes between "invisible" and "visible" ALP decay scenarios. The "invisible" scenario, characterised by a mono-$\gamma$ plus missing-energy signature, enables stringent limits on ALP-photon and ALP-quark ($b$ or $c$) couplings. Moreover, extensive research at flavour factories has explored various "visible" ALP decays into SM final states, which depend on a larger set of ALP-SM couplings. To streamline the "visible" ALP scenario, we introduce additional theoretical assumptions, such as universal ALP-fermion couplings, or we adopt specific benchmark ALP models, aiming to minimise the number of independent variables in our analysis.
- R. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
- R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791–1797.
- S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
- F. Wilczek, “Problem of Strong P𝑃Pitalic_P and T𝑇Titalic_T Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
- H. Georgi, D. B. Kaplan, and L. Randall, “Manifesting the Invisible Axion at Low-energies,” Phys. Lett. B 169 (1986) 73–78.
- K. Mimasu and V. Sanz, “ALPs at Colliders,” JHEP 06 (2015) 173, arXiv:1409.4792 [hep-ph].
- J. Jaeckel and M. Spannowsky, “Probing MeV to 90 GeV axion-like particles with LEP and LHC,” Phys. Lett. B 753 (2016) 482–487, arXiv:1509.00476 [hep-ph].
- I. Brivio, M. Gavela, L. Merlo, K. Mimasu, J. No, R. del Rey, and V. Sanz, “ALPs Effective Field Theory and Collider Signatures,” Eur. Phys. J. C 77 no. 8, (2017) 572, arXiv:1701.05379 [hep-ph].
- M. Bauer, M. Neubert, and A. Thamm, “Collider Probes of Axion-Like Particles,” JHEP 12 (2017) 044, arXiv:1708.00443 [hep-ph].
- A. Mariotti, D. Redigolo, F. Sala, and K. Tobioka, “New LHC bound on low-mass diphoton resonances,” Phys. Lett. B 783 (2018) 13–18, arXiv:1710.01743 [hep-ph].
- M. Bauer, M. Heiles, M. Neubert, and A. Thamm, “Axion-Like Particles at Future Colliders,” Eur. Phys. J. C 79 no. 1, (2019) 74, arXiv:1808.10323 [hep-ph].
- G. Alonso-Álvarez, M. Gavela, and P. Quilez, “Axion couplings to electroweak gauge bosons,” Eur. Phys. J. C 79 no. 3, (2019) 223, arXiv:1811.05466 [hep-ph].
- D. Aloni, C. Fanelli, Y. Soreq, and M. Williams, “Photoproduction of Axionlike Particles,” Phys. Rev. Lett. 123 no. 7, (2019) 071801, arXiv:1903.03586 [hep-ph].
- M. B. Gavela, J. M. No, V. Sanz, and J. F. de Trocóniz, “Nonresonant Searches for Axionlike Particles at the LHC,” Phys. Rev. Lett. 124 no. 5, (2020) 051802, arXiv:1905.12953 [hep-ph].
- S. Bruggisser, L. Grabitz, and S. Westhoff, “Global analysis of the ALP effective theory,” JHEP 01 (2024) 092, arXiv:2308.11703 [hep-ph].
- E. Izaguirre, T. Lin, and B. Shuve, “Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes,” Phys. Rev. Lett. 118 no. 11, (2017) 111802, arXiv:1611.09355 [hep-ph].
- M. Gavela, R. Houtz, P. Quilez, R. Del Rey, and O. Sumensari, “Flavor constraints on electroweak ALP couplings,” Eur. Phys. J. C 79 no. 5, (2019) 369, arXiv:1901.02031 [hep-ph].
- C. Cornella, P. Paradisi, and O. Sumensari, “Hunting for ALPs with Lepton Flavor Violation,” JHEP 01 (2020) 158, arXiv:1911.06279 [hep-ph].
- J. Martin Camalich, M. Pospelov, P. N. H. Vuong, R. Ziegler, and J. Zupan, “Quark Flavor Phenomenology of the QCD Axion,” Phys. Rev. D 102 no. 1, (2020) 015023, arXiv:2002.04623 [hep-ph].
- L. Calibbi, D. Redigolo, R. Ziegler, and J. Zupan, “Looking forward to lepton-flavor-violating ALPs,” JHEP 09 (2021) 173, arXiv:2006.04795 [hep-ph].
- M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, “Consistent Treatment of Axions in the Weak Chiral Lagrangian,” Phys. Rev. Lett. 127 no. 8, (2021) 081803, arXiv:2102.13112 [hep-ph].
- A. W. M. Guerrera and S. Rigolin, “Revisiting K→πa→𝐾𝜋𝑎K\rightarrow\pi aitalic_K → italic_π italic_a decays,” Eur. Phys. J. C 82 no. 3, (2022) 192, arXiv:2106.05910 [hep-ph].
- J. A. Gallo, A. W. M. Guerrera, S. Peñaranda, and S. Rigolin, “Leptonic meson decays into invisible ALP,” Nucl. Phys. B 979 (2022) 115791, arXiv:2111.02536 [hep-ph].
- M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, “Flavor probes of axion-like particles,” JHEP 09 (2022) 056, arXiv:2110.10698 [hep-ph].
- Y. Jho, S. Knapen, and D. Redigolo, “Lepton-flavor violating axions at MEG II,” JHEP 10 (2022) 029, arXiv:2203.11222 [hep-ph].
- A. W. M. Guerrera and S. Rigolin, “ALP production in weak mesonic decays,” Fortsch. Phys. 2023 (11, 2022) 2200192, arXiv:2211.08343 [hep-ph].
- L. Di Luzio, A. W. M. Guerrera, X. P. Díaz, and S. Rigolin, “On the IR/UV flavour connection in non-universal axion models,” JHEP 06 (2023) 046, arXiv:2304.04643 [hep-ph].
- W. J. Marciano, A. Masiero, P. Paradisi, and M. Passera, “Contributions of axionlike particles to lepton dipole moments,” Phys. Rev. D 94 no. 11, (2016) 115033, arXiv:1607.01022 [hep-ph].
- L. Di Luzio, R. Gröber, and P. Paradisi, “Hunting for CP𝐶𝑃CPitalic_C italic_P-violating axionlike particle interactions,” Phys. Rev. D 104 no. 9, (2021) 095027, arXiv:2010.13760 [hep-ph].
- L. Di Luzio, G. Levati, and P. Paradisi, “The chiral Lagrangian of CP-violating axion-like particles,” JHEP 2024 no. 02, (2024) 020, arXiv:2311.12158 [hep-ph].
- L. Di Luzio, H. Gisbert, G. Levati, P. Paradisi, and P. Sørensen, “CP-Violating Axions: A Theory Review,” arXiv:2312.17310 [hep-ph].
- F. Wilczek, “Decays of Heavy Vector Mesons Into Higgs Particles,” Phys. Rev. Lett. 39 (1977) 1304.
- M. Davier, “Searches for New Particles,” in 23rd International Conference on High-Energy Physics. 10, 1986.
- BESIII Collaboration, M. Ablikim et al., “Search for an axion-like particle in radiative J/ψ𝜓\psiitalic_ψ decays,” Phys. Lett. B 838 (2023) 137698, arXiv:2211.12699 [hep-ex].
- Belle-II Collaboration, F. Abudinén et al., “Search for Axion-Like Particles produced in e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT collisions at Belle II,” Phys. Rev. Lett. 125 no. 16, (2020) 161806, arXiv:2007.13071 [hep-ex].
- L. Merlo, F. Pobbe, S. Rigolin, and O. Sumensari, “Revisiting the production of ALPs at B-factories,” JHEP 06 (2019) 091, arXiv:1905.03259 [hep-ph].
- M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, “The Low-Energy Effective Theory of Axions and ALPs,” JHEP 04 (2021) 063, arXiv:2012.12272 [hep-ph].
- A. Zhitnitsky, “On Possible Suppression of the Axion Hadron Interactions. (In Russian),” Sov. J. Nucl. Phys. 31 (1980) 260.
- M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. B 104 (1981) 199–202.
- J. E. Kim, “Weak Interaction Singlet and Strong CP Invariance,” Phys. Rev. Lett. 43 (1979) 103.
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Can Confinement Ensure Natural CP Invariance of Strong Interactions?,” Nucl. Phys. B 166 (1980) 493–506.
- F. Arias-Aragón, J. Quevillon, and C. Smith, “Axion-like ALPs,” JHEP 03 (2023) 134, arXiv:2211.04489 [hep-ph].
- L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, “The landscape of QCD axion models,” Phys. Rept. 870 (2020) 1–117, arXiv:2003.01100 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- S. Eidelman, D. Epifanov, M. Fael, L. Mercolli, and M. Passera, “τ𝜏\tauitalic_τ dipole moments via radiative leptonic τ𝜏\tauitalic_τ decays,” JHEP 03 (2016) 140, arXiv:1601.07987 [hep-ph].
- Belle Collaboration, M. T. Prim et al., “Search for B+→μ+νμ→superscript𝐵superscript𝜇subscript𝜈𝜇B^{+}\to\mu^{+}\,\nu_{\mu}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT and B+→μ+N→superscript𝐵superscript𝜇𝑁B^{+}\to\mu^{+}\,Nitalic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_N with inclusive tagging,” Phys. Rev. D 101 no. 3, (2020) 032007, arXiv:1911.03186 [hep-ex].
- BESIII Collaboration, M. Ablikim et al., “Design and Construction of the BESIII Detector,” Nucl. Instrum. Meth. A 614 (2010) 345–399, arXiv:0911.4960 [physics.ins-det].
- H. Koiso, A. Morita, Y. Ohnishi, K. Oide, and K. Satoh, “Lattice of the KEKB colliding rings,” PTEP 2013 no. 3, (2013) 03A009.
- Y. Ohnishi et al., “Accelerator design at SuperKEKB,” PTEP 2013 (2013) 03A011.
- E. C. Poggio, H. R. Quinn, and S. Weinberg, “Smearing the Quark Model,” Phys. Rev. D 13 (1976) 1958.
- M. A. Shifman, “Quark hadron duality,” in 8th International Symposium on Heavy Flavor Physics, vol. 3, pp. 1447–1494. World Scientific, Singapore, 7, 2000. arXiv:hep-ph/0009131.
- D. Aloni, Y. Soreq, and M. Williams, “Coupling QCD-Scale Axionlike Particles to Gluons,” Phys. Rev. Lett. 123 no. 3, (2019) 031803, arXiv:1811.03474 [hep-ph].
- M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas, “Higgs boson production at the LHC,” Nucl. Phys. B 453 (1995) 17–82, arXiv:hep-ph/9504378.
- L. Di Luzio and G. Piazza, “a→πππ→𝑎𝜋𝜋𝜋a\to\pi\pi\piitalic_a → italic_π italic_π italic_π decay at next-to-leading order in chiral perturbation theory,” JHEP 12 (2022) 041, arXiv:2206.04061 [hep-ph]. [Erratum: JHEP 05, 018 (2023)].
- L. Di Luzio, J. Martin Camalich, G. Martinelli, J. A. Oller, and G. Piazza, “Axion-pion thermalization rate in unitarized NLO chiral perturbation theory,” Phys. Rev. D 108 no. 3, (2023) 035025, arXiv:2211.05073 [hep-ph].
- L. Di Luzio, F. Mescia, and E. Nardi, “Redefining the Axion Window,” Phys. Rev. Lett. 118 no. 3, (2017) 031801, arXiv:1610.07593 [hep-ph].
- L. Di Luzio, F. Mescia, and E. Nardi, “Window for preferred axion models,” Phys. Rev. D 96 no. 7, (2017) 075003, arXiv:1705.05370 [hep-ph].
- BaBar Collaboration, B. Aubert et al., “Search for Invisible Decays of a Light Scalar in Radiative Transitions υ3S→γ→subscript𝜐3𝑆𝛾\upsilon_{3S}\to\gammaitalic_υ start_POSTSUBSCRIPT 3 italic_S end_POSTSUBSCRIPT → italic_γ A0,” in 34th International Conference on High Energy Physics. 7, 2008. arXiv:0808.0017 [hep-ex].
- BaBar Collaboration, P. del Amo Sanchez et al., “Search for Production of Invisible Final States in Single-Photon Decays of Υ(1S)Υ1𝑆\Upsilon(1S)roman_Υ ( 1 italic_S ),” Phys. Rev. Lett. 107 (2011) 021804, arXiv:1007.4646 [hep-ex].
- Belle Collaboration, I. S. Seong et al., “Search for a light CP𝐶𝑃CPitalic_C italic_P-odd Higgs boson and low-mass dark matter at the Belle experiment,” Phys. Rev. Lett. 122 no. 1, (2019) 011801, arXiv:1809.05222 [hep-ex].
- BESIII Collaboration, M. Ablikim et al., “Search for the decay J/ψ→γ+invisible→𝐽𝜓𝛾invisibleJ/\psi\to\gamma+\rm{invisible}italic_J / italic_ψ → italic_γ + roman_invisible,” Phys. Rev. D 101 no. 11, (2020) 112005, arXiv:2003.05594 [hep-ex].
- BaBar Collaboration, J. P. Lees et al., “Search for hadronic decays of a light Higgs boson in the radiative decay Υ→γA0→Υ𝛾superscript𝐴0\Upsilon\to\gamma A^{0}roman_Υ → italic_γ italic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 107 (2011) 221803, arXiv:1108.3549 [hep-ex].
- BaBar Collaboration, J. P. Lees et al., “Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ΥΥ\Upsilonroman_Υ(1S),” Phys. Rev. D 87 no. 3, (2013) 031102, arXiv:1210.0287 [hep-ex]. [Erratum: Phys.Rev.D 87, 059903 (2013)].
- BaBar Collaboration, J. P. Lees et al., “Search for a light Higgs resonance in radiative decays of the Y(1S) with a charm tag,” Phys. Rev. D 91 no. 7, (2015) 071102, arXiv:1502.06019 [hep-ex].
- Belle Collaboration, S. Jia et al., “Search for a light Higgs boson in single-photon decays of Υ(1S)Υ1𝑆\Upsilon(1S)roman_Υ ( 1 italic_S ) using Υ(2S)→π+π−Υ(1S)→Υ2𝑆superscript𝜋superscript𝜋Υ1𝑆\Upsilon(2S)\to\pi^{+}\pi^{-}\Upsilon(1S)roman_Υ ( 2 italic_S ) → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_Υ ( 1 italic_S ) tagging method,” Phys. Rev. Lett. 128 no. 8, (2022) 081804, arXiv:2112.11852 [hep-ex].
- BESIII Collaboration, M. Ablikim et al., “Search for a CP𝐶𝑃CPitalic_C italic_P-odd light Higgs boson in J/ψ→γA0→𝐽𝜓𝛾superscript𝐴0J/\psi\to\gamma A^{0}italic_J / italic_ψ → italic_γ italic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT,” Phys. Rev. D 105 no. 1, (2022) 012008, arXiv:2109.12625 [hep-ex].
- BaBar Collaboration, J. P. Lees et al., “Search for a light Higgs boson decaying to two gluons or ss¯𝑠¯𝑠s\bar{s}italic_s over¯ start_ARG italic_s end_ARG in the radiative decays of Υ(1S)Υ1𝑆\Upsilon(1S)roman_Υ ( 1 italic_S ),” Phys. Rev. D 88 no. 3, (2013) 031701, arXiv:1307.5306 [hep-ex].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.