Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate (2402.11669v1)

Published 18 Feb 2024 in physics.optics and physics.app-ph

Abstract: Optical frequency combs are indispensable links between the optical and microwave domains, enabling a wide range of applications including precision spectroscopy, ultrastable frequency generation, and timekeeping. Chip-scale integration miniaturizes bulk implementations onto photonic chips, offering highly compact, stable, and power-efficient frequency comb sources. State of the art integrated frequency comb sources are based on resonantly-enhanced Kerr effect and, more recently, on electro-optic effect. While the former can routinely reach octave-spanning bandwidths and the latter feature microwave-rate spacings, achieving both in the same material platform has been challenging. Here, we leverage both strong Kerr nonlinearity and efficient electro-optic phase modulation available in the ultralow-loss thin-film lithium niobate photonic platform, to demonstrate a hybrid Kerr-electro-optic frequency comb with stabilized spacing. In our approach, a dissipative Kerr soliton is first generated, and then electro-optic division is used to realize a frequency comb with 2,589 comb lines spaced by 29.308 GHz and spanning 75.9 THz (588 nm) end-to-end. Further, we demonstrate electronic stabilization and control of the soliton spacing, naturally facilitated by our approach. The broadband, microwave-rate comb in this work overcomes the spacing-span tradeoff that exists in all integrated frequency comb sources, and paves the way towards chip-scale solutions for complex tasks such as laser spectroscopy covering multiple bands, micro- and millimeter-wave generation, and massively parallel optical communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. Optical frequency metrology. Nature 416, 233–237 (2002).
  2. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
  3. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
  4. Dual-comb spectroscopy. Optica 3, 414–426 (2016).
  5. Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
  6. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
  7. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photonics 5, 425–429 (2011).
  8. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
  9. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nature photonics 11, 44–47 (2017).
  10. Liu, J. et al. Photonic microwave generation in the x-and k-band using integrated soliton microcombs. Nature Photonics 14, 486–491 (2020).
  11. Tetsumoto, T. et al. Optically referenced 300 ghz millimetre-wave oscillator. Nature Photonics 15, 516–522 (2021).
  12. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).
  13. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
  14. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photonics 8, 145–152 (2014).
  15. Dissipative kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
  16. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
  17. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).
  18. Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nature Photonics 16, 679–685 (2022).
  19. Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
  20. Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
  21. Shi, B. et al. Frequency-comb-linearized, widely tunable lasers for coherent ranging. arXiv preprint arXiv:2308.15875 (2023).
  22. Koenig, S. et al. Wireless sub-thz communication system with high data rate. Nature Photonics 7, 977–981 (2013).
  23. Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmwave platform with microcavity solitons. Light: Science & Applications 10, 4 (2021).
  24. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
  25. Jørgensen, A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nature Photonics 16, 798–802 (2022).
  26. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications 13, 7862 (2022).
  27. Rizzo, A. et al. Massively scalable kerr comb-driven silicon photonic link. Nature Photonics 17, 781–790 (2023).
  28. Optical atomic clocks. Reviews of Modern Physics 87, 637 (2015).
  29. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
  30. Supercontinuum generation in photonic crystal fiber. Reviews of modern physics 78, 1135 (2006).
  31. Xiang, C. et al. 3d integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).
  32. Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
  33. Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
  34. Integrated optical frequency comb technologies. Nature Photonics 16, 95–108 (2022).
  35. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
  36. Pfeiffer, M. H. et al. Octave-spanning dissipative kerr soliton frequency combs in S⁢i3⁢N4𝑆subscript𝑖3subscript𝑁4{Si}_{3}{N}_{4}italic_S italic_i start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT microresonators. Optica 4, 684–691 (2017).
  37. Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications 12, 5428 (2021).
  38. Weng, H. et al. Directly accessing octave-spanning dissipative kerr soliton frequency combs in an aln microresonator. Photonics Research 9, 1351–1357 (2021).
  39. Anderson, M. H. et al. Zero dispersion kerr solitons in optical microresonators. Nature communications 13, 4764 (2022).
  40. Cheng, R. et al. On-chip synchronous pumped χ(3)superscript𝜒3\chi^{(3)}italic_χ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT optical parametric oscillator on thin-film lithium niobate. arXiv preprint arXiv:2304.12878 (2023).
  41. Hybrid electro-optically modulated microcombs. Physical review letters 109, 263901 (2012).
  42. Drake, T. E. et al. Terahertz-rate kerr-microresonator optical clockwork. Physical Review X 9, 031023 (2019).
  43. Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).
  44. Monolithic kerr and electro-optic hybrid microcombs. Optica 9, 1060–1065 (2022).
  45. He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nature Communications 14, 3467 (2023).
  46. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).
  47. Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).
  48. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
  49. Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w. Optica 6, 1455–1460 (2019).
  50. McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nature Communications 13, 4532 (2022).
  51. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242–352 (2021).
  52. Monolithic ultra-high-q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).
  53. He, Y. et al. Self-starting bi-chromatic LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT soliton microcomb. Optica 6, 1138–1144 (2019).
  54. Wan, S. et al. Photorefraction-assisted self-emergence of dissipative kerr solitons. arXiv preprint arXiv:2305.02590 (2023).
  55. Dynamical thermal behavior and thermal self-stability of microcavities. Optics express 12, 4742–4750 (2004).
  56. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton cherenkov radiation. Science 351, 357–360 (2016).
  57. Parametric seeding of a microresonator optical frequency comb. Optics Express 21, 17615–17624 (2013).
  58. Liu, X. et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Advanced Photonics Nexus 1, 016001–016001 (2022).
  59. Zhou, Y. et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process. Laser & Photonics Reviews 17, 2200686 (2023).
  60. Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light: Science & Applications 11, 327 (2022).
  61. Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-q microresonators. Nature Photonics 15, 346–353 (2021).
  62. de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
  63. Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
  64. Li, M. et al. Integrated pockels laser. Nature communications 13, 5344 (2022).
  65. Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).
  66. Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).
  67. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature photonics 3, 529–533 (2009).
  68. Self-referenced photonic chip soliton kerr frequency comb. Light: Science & Applications 6, e16202–e16202 (2017).
  69. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
  70. Xu, X. et al. 11 tops photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
  71. He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics letters 44, 2314–2317 (2019).
  72. Yuan, Z. et al. Soliton pulse pairs at multiple colors in normal dispersion microresonators. arXiv preprint arXiv:2301.10976 (2023).
  73. Xue, X. et al. Mode-locked dark pulse kerr combs in normal-dispersion microresonators. Nature Photonics 9, 594–600 (2015).
  74. Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nature Photonics 17, 992–999 (2023).
  75. Jung, H. et al. Tantala kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).
  76. Soliton frequency comb at microwave rates in a high-q silica microresonator. Optica 2, 1078–1085 (2015).
  77. Wu, L. et al. Algaas soliton microcombs at room temperature. Optics Letters 48, 3853–3856 (2023).
  78. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).
  79. Quantum optics of soliton microcombs. Nature Photonics 16, 52–58 (2022).
  80. Diamond nonlinear photonics. Nature Photonics 8, 369–374 (2014).
  81. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics 14, 57–62 (2020).
  82. Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Communications Physics 6, 144 (2023).
  83. Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics 15, 461–467 (2021).
  84. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nature Photonics 17, 943–950 (2023).
  85. Stokes solitons in optical microcavities. Nature Physics 13, 53–57 (2017).
  86. Bao, H. et al. Laser cavity-soliton microcombs. Nature Photonics 13, 384–389 (2019).
  87. Bruch, A. W. et al. Pockels soliton microcomb. Nature Photonics 15, 21–27 (2021).
  88. Soliton crystals in kerr resonators. Nature Photonics 11, 671–676 (2017).
  89. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
  90. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
  91. Kim, B. Y. et al. Turn-key, high-efficiency kerr comb source. Optics letters 44, 4475–4478 (2019).
  92. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nature communications 10, 680 (2019).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com