Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators (2403.01107v2)
Abstract: Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearity, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate.
- Pasquazi, A. et al. Micro-combs: A novel generation of optical sources. Physics Reports 729, 1–81 (2018).
- Photonic-chip-based frequency combs. Nature photonics 13, 158–169 (2019).
- 20 years of developments in optical frequency comb technology and applications. Communications Physics 2, 153 (2019).
- Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
- Integrated optical frequency comb technologies. Nature Photonics 16, 95–108 (2022).
- Herr, T. et al. Temporal solitons in optical microresonators. Nature Photonics 8, 145–152 (2014).
- Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
- Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
- Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nature Photonics 15, 516–522 (2021).
- Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
- Liu, J. et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics 14, 486–491 (2020).
- Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9, 561–564 (2022).
- Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
- Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
- Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
- Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
- Obrzud, E. et al. A microphotonic astrocomb. Nature Photonics 13, 31–35 (2019).
- Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nature photonics 13, 25–30 (2019).
- Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
- Jørgensen, A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nature Photonics 16, 798–802 (2022).
- Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications 13, 7862 (2022).
- Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nature Photonics 17, 781–790 (2023).
- Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
- Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
- Bai, B. et al. Microcomb-based integrated photonic processing unit. Nature Communications 14, 66 (2023).
- Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
- Optical frequency metrology. Nature 416, 233–237 (2002).
- Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
- Pfeiffer, M. H. et al. Octave-spanning dissipative kerr soliton frequency combs in Si33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTN44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT microresonators. Optica 4, 684–691 (2017).
- Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications 12, 5428 (2021).
- Weng, H. et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Research 9, 1351–1357 (2021).
- Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).
- Self-referenced photonic chip soliton Kerr frequency comb. Light: Science & Applications 6, e16202–e16202 (2017).
- Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
- Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Physical Review X 9, 031023 (2019).
- Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).
- Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242–352 (2021).
- Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
- Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
- Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).
- Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).
- Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
- Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).
- McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nature Communications 13, 4532 (2022).
- Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature communications 10, 978 (2019).
- Yu, M. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light: Science & Applications 9, 9 (2020).
- Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators. Communications Physics 6, 350 (2023).
- Gong, Z. et al. Soliton microcomb generation at 2 μ𝜇\muitalic_μm in z-cut lithium niobate microring resonators. Optics letters 44, 3182–3185 (2019).
- He, Y. et al. Self-starting bi-chromatic LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT soliton microcomb. Optica 6, 1138–1144 (2019).
- Gao, Y. et al. Compact lithium niobate microring resonators in the ultrahigh Q/V regime. Optics Letters 48, 3949–3952 (2023).
- Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).
- Wan, S. et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons. arXiv preprint arXiv:2305.02590 (2023).
- He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nature Communications 14, 3467 (2023).
- Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate. arXiv preprint arXiv:2402.11669 (2024).
- He, Y. et al. Octave-spanning lithium niobate soliton microcombs. In Conference on Lasers and Electro-Optics, STu2G.1 (Optica Publishing Group, 2021). URL https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2021-STu2G.1.
- Gong, Z. et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Physical Review Letters 125, 183901 (2020).
- Basiev, T. et al. Raman spectroscopy of crystals for stimulated Raman scattering. Optical materials 11, 307–314 (1999).
- The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Journal of Physics: Condensed Matter 9, 9687 (1997).
- Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Physical Review A 87, 053852 (2013).
- Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Optics Letters 42, 2786–2789 (2017).
- Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Optics letters 36, 3398–3400 (2011).
- Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Optics letters 44, 4737–4740 (2019).
- He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics letters 44, 2314–2317 (2019).
- Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photonics research 8, 1676–1686 (2020).
- Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics 15, 461–467 (2021).
- Zhang, K. et al. Spectral engineering of optical microresonators in anisotropic lithium niobate crystal. Advanced Materials 2308840 (2024).
- de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
- Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobate/III-V laser. Optics Letters 46, 5413–5416 (2021).
- Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
- Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).
- Stimulated Raman gain coefficients for Li66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPTNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Ba22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTNaNb55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPTO1515{}_{15}start_FLOATSUBSCRIPT 15 end_FLOATSUBSCRIPT, and other materials. Applied Physics Letters 13, 190–193 (1968).