Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators (2403.01107v2)

Published 2 Mar 2024 in physics.optics and physics.app-ph

Abstract: Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearity, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Pasquazi, A. et al. Micro-combs: A novel generation of optical sources. Physics Reports 729, 1–81 (2018).
  2. Photonic-chip-based frequency combs. Nature photonics 13, 158–169 (2019).
  3. 20 years of developments in optical frequency comb technology and applications. Communications Physics 2, 153 (2019).
  4. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
  5. Integrated optical frequency comb technologies. Nature Photonics 16, 95–108 (2022).
  6. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photonics 8, 145–152 (2014).
  7. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
  8. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
  9. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nature Photonics 15, 516–522 (2021).
  10. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
  11. Liu, J. et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics 14, 486–491 (2020).
  12. Yao, L. et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica 9, 561–564 (2022).
  13. Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
  14. Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
  15. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
  16. Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
  17. Obrzud, E. et al. A microphotonic astrocomb. Nature Photonics 13, 31–35 (2019).
  18. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nature photonics 13, 25–30 (2019).
  19. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
  20. Jørgensen, A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nature Photonics 16, 798–802 (2022).
  21. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications 13, 7862 (2022).
  22. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nature Photonics 17, 781–790 (2023).
  23. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
  24. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
  25. Bai, B. et al. Microcomb-based integrated photonic processing unit. Nature Communications 14, 66 (2023).
  26. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
  27. Optical frequency metrology. Nature 416, 233–237 (2002).
  28. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
  29. Pfeiffer, M. H. et al. Octave-spanning dissipative kerr soliton frequency combs in Si33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTN44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT microresonators. Optica 4, 684–691 (2017).
  30. Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications 12, 5428 (2021).
  31. Weng, H. et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Research 9, 1351–1357 (2021).
  32. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).
  33. Self-referenced photonic chip soliton Kerr frequency comb. Light: Science & Applications 6, e16202–e16202 (2017).
  34. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
  35. Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Physical Review X 9, 031023 (2019).
  36. Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).
  37. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242–352 (2021).
  38. Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
  39. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
  40. Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).
  41. Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).
  42. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
  43. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).
  44. McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nature Communications 13, 4532 (2022).
  45. Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature communications 10, 978 (2019).
  46. Yu, M. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light: Science & Applications 9, 9 (2020).
  47. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators. Communications Physics 6, 350 (2023).
  48. Gong, Z. et al. Soliton microcomb generation at 2 μ𝜇\muitalic_μm in z-cut lithium niobate microring resonators. Optics letters 44, 3182–3185 (2019).
  49. He, Y. et al. Self-starting bi-chromatic LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT soliton microcomb. Optica 6, 1138–1144 (2019).
  50. Gao, Y. et al. Compact lithium niobate microring resonators in the ultrahigh Q/V regime. Optics Letters 48, 3949–3952 (2023).
  51. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).
  52. Wan, S. et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons. arXiv preprint arXiv:2305.02590 (2023).
  53. He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nature Communications 14, 3467 (2023).
  54. Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate. arXiv preprint arXiv:2402.11669 (2024).
  55. He, Y. et al. Octave-spanning lithium niobate soliton microcombs. In Conference on Lasers and Electro-Optics, STu2G.1 (Optica Publishing Group, 2021). URL https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2021-STu2G.1.
  56. Gong, Z. et al. Photonic dissipation control for Kerr soliton generation in strongly Raman-active media. Physical Review Letters 125, 183901 (2020).
  57. Basiev, T. et al. Raman spectroscopy of crystals for stimulated Raman scattering. Optical materials 11, 307–314 (1999).
  58. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Journal of Physics: Condensed Matter 9, 9687 (1997).
  59. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Physical Review A 87, 053852 (2013).
  60. Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Optics Letters 42, 2786–2789 (2017).
  61. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Optics letters 36, 3398–3400 (2011).
  62. Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Optics letters 44, 4737–4740 (2019).
  63. He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics letters 44, 2314–2317 (2019).
  64. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photonics research 8, 1676–1686 (2020).
  65. Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics 15, 461–467 (2021).
  66. Zhang, K. et al. Spectral engineering of optical microresonators in anisotropic lithium niobate crystal. Advanced Materials 2308840 (2024).
  67. de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
  68. Han, Y. et al. Electrically pumped widely tunable O-band hybrid lithium niobate/III-V laser. Optics Letters 46, 5413–5416 (2021).
  69. Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
  70. Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).
  71. Stimulated Raman gain coefficients for Li66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPTNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Ba22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTNaNb55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPTO1515{}_{15}start_FLOATSUBSCRIPT 15 end_FLOATSUBSCRIPT, and other materials. Applied Physics Letters 13, 190–193 (1968).
Citations (2)

Summary

We haven't generated a summary for this paper yet.