Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fourier and small ball estimates for word maps on unitary groups (2402.11108v1)

Published 16 Feb 2024 in math.GR and math.PR

Abstract: To a non-trivial word $w(x_{1},...,x_{r})$ in a free group $F_{r}$ on $r$ elements and a group $G$, one can associate the word map $w_{G}:G{r}\rightarrow G$ that takes an $r$-tuple $(g_{1},...,g_{r})$ in $G{r}$ to $w(g_{1},...,g_{r})$. If $G$ is compact, we further associate the word measure $\tau_{w,G}$, defined as the distribution of $w_{G}(\mathsf{X}{1},...,\mathsf{X}{r})$, where $\mathsf{X}{1},...,\mathsf{X}{r}$ are independent and Haar-random elements in $G$. In this paper we study word maps and word measures on the family of special unitary groups $\left{ \mathrm{SU}{n}\right} _{n\geq2}$. Our first result is a small ball estimate for $w{\mathrm{SU}{n}}$. We show that for every $w\in F{r}\smallsetminus\left{ 1\right} $ there are $\epsilon(w),\delta(w)>0$ such that if $B\subseteq\mathrm{SU}{n}$ is a ball of radius at most $\delta(w)\mathrm{diam}(\mathrm{SU}{n})$ in the Hilbert-Schmidt metric, then $\tau_{w,\mathrm{SU}{n}}(B)\leq(\mu{\mathrm{SU}{n}}(B)){\epsilon(w)}$, where $\mu{\mathrm{SU}{n}}$ is the Haar probability measure. Our second main result is about the random walks generated by $\tau{w,\mathrm{SU}{n}}$. We provide exponential upper bounds on the large Fourier coefficients of $\tau{w,\mathrm{SU}{n}}$, and as a consequence we show there exists $t(w)\in\mathbb{N}$, such that $\tau{w,\mathrm{SU}{n}}{*t}$ has bounded density for every $t\geq t(w)$ and every $n\geq2$, answering a conjecture by the first two authors. As a key step in the proof, we establish, for every large irreducible character $\rho$ of $\mathrm{SU}{n}$, an exponential upper bound of the form $\left|\rho(g)\right|<\rho(1){1-\epsilon}$, for elements $g$ in $\mathrm{SU}_{n}$ whose eigenvalues are sufficiently spread out on the unit circle in $\mathbb{C{\times}}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. A. Aizenbud and N. Avni. Representation growth and rational singularities of the moduli space of local systems. Invent. Math., 204(1):245–316, 2016.
  2. N. Avni and I. Glazer. On the Fourier coefficients of word maps on unitary groups. arXiv:2210.04164.
  3. Singularities of differentiable maps. Vol. II, volume 83 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the authors and James Montaldi.
  4. Geometry of manifolds, volume Vol. XV of Pure and Applied Mathematics. Academic Press, New York-London, 1964.
  5. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
  6. A. Borel. On free subgroups of semisimple groups. Enseign. Math. (2), 29(1-2):151–164, 1983.
  7. J. Bourgain. On the distribution of polynomials on high-dimensional convex sets. In Geometric aspects of functional analysis (1989–90), volume 1469 of Lecture Notes in Math., pages 127–137. Springer, Berlin, 1991.
  8. Multidimensional van der Corput and sublevel set estimates. J. Amer. Math. Soc., 12(4):981–1015, 1999.
  9. A number theoretic characterization of E-smooth and (FRS) morphisms: estimates on the number of ℤ/pk⁢ℤℤsuperscript𝑝𝑘ℤ\mathbb{Z}/p^{k}\mathbb{Z}blackboard_Z / italic_p start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT blackboard_Z-points. Algebra Number Theory, 17(12):2229–2260, 2023.
  10. Motivic integration, volume 325 of Progress in Mathematics. Birkhäuser/Springer, New York, 2018.
  11. B. Collins and S. Matsumoto. Weingarten calculus via orthogonality relations: new applications. ALEA Lat. Am. J. Probab. Math. Stat., 14(1):631–656, 2017.
  12. Igusa’s conjecture for exponential sums: optimal estimates for nonrational singularities. Forum Math. Pi, 7:e3, 28, 2019.
  13. The Weingarten calculus. Notices Amer. Math. Soc., 69(5):734–745, 2022.
  14. B. Collins. Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not., (17):953–982, 2003.
  15. B. Collins and P. Śniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys., 264(3):773–795, 2006.
  16. A. Carbery and J. Wright. Distributional and Lqsuperscript𝐿𝑞L^{q}italic_L start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT norm inequalities for polynomials over convex bodies in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Math. Res. Lett., 8(3):233–248, 2001.
  17. J. Denef. Report on Igusa’s local zeta function. Number 201-203, pages Exp. No. 741, 359–386 (1992). 1991. Séminaire Bourbaki, Vol. 1990/91.
  18. L. Ein and M. Mustaţă. Jet schemes and singularities. In Algebraic geometry—Seattle 2005. Part 2, volume 80 of Proc. Sympos. Pure Math., pages 505–546. Amer. Math. Soc., Providence, RI, 2009.
  19. Kenneth Falconer. Techniques in fractal geometry. John Wiley & Sons, Ltd., Chichester, 1997.
  20. W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
  21. I. Glazer and Y. I. Hendel. On singularity properties of convolutions of algebraic morphisms. Selecta Math. (N.S.), 25(1):Art. 15, 41, 2019.
  22. I. Glazer and Y. I. Hendel. On singularity properties of convolutions of algebraic morphisms—the general case. J. Lond. Math. Soc. (2), 103(4):1453–1479, 2021. With an appendix by Glazer, Hendel and Gady Kozma.
  23. I. Glazer and Y. I. Hendel. On singularity properties of word maps and applications to probabilistic Waring-type problems. Mem. Amer. Math. Soc., to appear, 2023.
  24. Integrability of pushforward measures by analytic maps. arXiv:2202.12446.
  25. Low degree representations of simple Lie groups. Proc. Amer. Math. Soc., 140(5):1823–1834, 2012.
  26. I. Glazer and D. Mikulincer. Anti-concentration of polynomials: Dimension-free covariance bounds and decay of Fourier coefficients. J. Funct. Anal., 283(9):Paper No. 109639, 2022.
  27. A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., (24):231, 1965.
  28. R. Goodman and N. R. Wallach. Symmetry, representations, and invariants, volume 255 of Graduate Texts in Mathematics. Springer, Dordrecht, 2009.
  29. R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
  30. Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
  31. J. Igusa. Forms of higher degree, volume 59 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978.
  32. M. Kassabov. Universal lattices and unbounded rank expanders. Invent. Math., 170(2):297–326, 2007.
  33. A. W. Knapp. Representation theory of semisimple groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. An overview based on examples, Reprint of the 1986 original.
  34. J. Kollár. Which powers of holomorphic functions are integrable? arXiv:0805.0756.
  35. Poles of Archimedean zeta functions for analytic mappings. J. Lond. Math. Soc. (2), 87(1):1–21, 2013.
  36. M. Larsen and A. Lubotzky. Representation growth of linear groups. J. Eur. Math. Soc. (JEMS), 10(2):351–390, 2008.
  37. M. Larsen and A. Shalev. Fibers of word maps and some applications. J. Algebra, 354:36–48, 2012.
  38. Probabilistic Waring problems for finite simple groups. Ann. of Math. (2), 190(2):561–608, 2019.
  39. I. G. Macdonald. The volume of a compact Lie group. Invent. Math., 56(2):93–95, 1980.
  40. E. S. Meckes. The random matrix theory of the classical compact groups, volume 218 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2019.
  41. J. Milnor. Curvatures of left invariant metrics on Lie groups. Advances in Math., 21(3):293–329, 1976.
  42. M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups I: 𝒰⁢(n)𝒰𝑛\mathcal{U}(n)caligraphic_U ( italic_n ). Invent. Math., 218(2):341–411, 2019.
  43. J. A. Mingo and R. Speicher. Free probability and random matrices, volume 35 of Fields Institute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017.
  44. Second order freeness and fluctuations of random matrices. II. Unitary random matrices. Adv. Math., 209(1):212–240, 2007.
  45. M. Mustaţă. Jet schemes of locally complete intersection canonical singularities. Invent. Math., 145(3):397–424, 2001. With an appendix by David Eisenbud and Edward Frenkel.
  46. M. Mustaţă. IMPANGA lecture notes on log canonical thresholds. In Contributions to algebraic geometry, EMS Ser. Congr. Rep., pages 407–442. Eur. Math. Soc., Zürich, 2012. Notes by Tomasz Szemberg.
  47. A universal formula for the volume of compact lie groups. arXiv:1304.3031.
  48. The geometric Kannan-Lovász-Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions. Algebra i Analiz, 14(2):214–234, 2002.
  49. E. M. Rains. High powers of random elements of compact Lie groups. Probab. Theory Related Fields, 107(2):219–241, 1997.
  50. E. M. Rains. Images of eigenvalue distributions under power maps. Probab. Theory Related Fields, 125(4):522–538, 2003.
  51. A. Reiser. Pushforwards of measures on real varieties under maps with rational singularities. arXiv:1807.00079.
  52. F. Rădulescu. Combinatorial aspects of Connes’s embedding conjecture and asymptotic distribution of traces of products of unitaries. In Operator theory 20, volume 6 of Theta Ser. Adv. Math., pages 197–205. Theta, Bucharest, 2006.
  53. D. A. Timashev. Homogeneous spaces and equivariant embeddings, volume 138 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8.
  54. R. Vakil. Math 216: Foundations of algebraic geometry. http://math.stanford.edu/~vakil/216blog/index.html.
  55. Free random variables, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups.
  56. D. Voiculescu. Limit laws for random matrices and free products. Invent. Math., 104(1):201–220, 1991.
  57. Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra. Trans. Amer. Math. Soc., 360(4):2205–2227, 2008.
  58. D. Weingarten. Asymptotic behavior of group integrals in the limit of infinite rank. J. Mathematical Phys., 19(5):999–1001, 1978.
  59. H. Weyl. The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J., 1939.
  60. Ling Yang. Injectivity radius and Cartan polyhedron for simply connected symmetric spaces. Chinese Ann. Math. Ser. B, 28(6):685–700, 2007.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube