Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Core Stability in Additively Separable Hedonic Games of Low Treewidth (2402.10815v1)

Published 16 Feb 2024 in cs.DS, cs.CC, and cs.GT

Abstract: Additively Separable Hedonic Game (ASHG) are coalition-formation games where we are given a graph whose vertices represent $n$ selfish agents and the weight of each edge $uv$ denotes how much agent $u$ gains (or loses) when she is placed in the same coalition as agent $v$. We revisit the computational complexity of the well-known notion of core stability of ASHGs, where the goal is to construct a partition of the agents into coalitions such that no group of agents would prefer to diverge from the given partition and form a new (blocking) coalition. Since both finding a core stable partition and verifying that a given partition is core stable are intractable problems ($\Sigma_2p$-complete and coNP-complete respectively) we study their complexity from the point of view of structural parameterized complexity, using standard graph-theoretic parameters, such as treewidth.

Citations (2)

Summary

We haven't generated a summary for this paper yet.