Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strebel differentials and string field theory (2402.09641v2)

Published 15 Feb 2024 in hep-th

Abstract: A closed string worldsheet of genus $g$ with $n$ punctures can be presented as a contact interaction in which $n$ semi-infinite cylinders are glued together in a specific way via the Strebel differential on it, if $n\geq1,\ 2g-2+n>0$. We construct a string field theory of closed strings such that all the Feynman diagrams are represented by such contact interactions. In order to do so, we define off-shell amplitudes in the underlying string theory using the combinatorial Fenchel-Nielsen coordinates to describe the moduli space and derive a recursion relation satisfied by them. Utilizing the Fokker-Planck formalism, we construct a string field theory from which the recursion relation can be deduced through the Schwinger-Dyson equation. The Fokker-Planck Hamiltonian consists of kinetic terms and three string interaction terms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. K. Strebel, Quadratic differentials. Springer, 1984.
  2. M. Saadi and B. Zwiebach, “Closed string field theory from polyhedra,” Annals Phys. 192 (1989) 213.
  3. T. Kugo, H. Kunitomo, and K. Suehiro, “Nonpolynomial closed string field theory,” Phys. Lett. B 226 (1989) 48–54.
  4. T. Kugo and K. Suehiro, “Nonpolynomial closed string field theory: Action and its gauge invariance,” Nucl. Phys. B 337 (1990) 434–466.
  5. B. Zwiebach, “Consistency of closed string polyhedra from minimal area,” Phys. Lett. B 241 (1990) 343–349.
  6. B. Zwiebach, “How covariant closed string theory solves a minimal area problem,” Commun. Math. Phys. 136 (1991) 83–118.
  7. B. Zwiebach, “Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation,” Nucl. Phys. B 390 (1993) 33–152, arXiv:hep-th/9206084.
  8. S. F. Moosavian and R. Pius, “Hyperbolic geometry and closed bosonic string field theory. part I. the string vertices via hyperbolic Riemann surfaces,” JHEP 08 (2019) 157, arXiv:1706.07366 [hep-th].
  9. S. F. Moosavian and R. Pius, “Hyperbolic geometry and closed bosonic string field theory. part II. the rules for evaluating the quantum BV master action,” JHEP 08 (2019) 177, arXiv:1708.04977 [hep-th].
  10. K. Costello and B. Zwiebach, “Hyperbolic string vertices,” JHEP 02 (2022) 002, arXiv:1909.00033 [hep-th].
  11. N. Ishibashi, “The Fokker-Planck formalism for closed bosonic strings,” PTEP 2023 (2023) no. 2, 023B05, arXiv:2210.04134 [hep-th].
  12. M. Mirzakhani, “Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces,” Invent. Math. 167 (2006) no. 1, 179–222.
  13. M. Mirzakhani, “Weil-Petersson volumes and intersection theory on the moduli space of curves,” J. Am. Math. Soc. 20 (2007) no. 01, 1–24.
  14. J. Bennett, D. Cochran, B. Safnuk, and K. Woskoff, “Topological recursion for symplectic volumes of moduli spaces of curves,” Michigan Mathematical Journal 61 (2012) no. 2, 331–358.
  15. J. E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewański, and C. Wheeler, “On the Kontsevich geometry of the combinatorial Teichmüller space,” arXiv preprint arXiv:2010.11806 (2020) .
  16. M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function,” Communications in Mathematical Physics 147 (1992) 1–23.
  17. A. H. Fırat, “Hyperbolic three-string vertex,” JHEP 08 (2021) 035, arXiv:2102.03936 [hep-th].
  18. A. H. Fırat, “Bootstrapping closed string field theory,” JHEP 05 (2023) 186, arXiv:2302.12843 [hep-th].
  19. G. Mondello, “Riemann surfaces with boundary and natural triangulations of the Teichmüller space,” Journal of the European Mathematical Society 13 (2011) no. 3, 635–684.
  20. G. Mondello, “Triangulated Riemann surfaces with boundary and the Weil-Petersson Poisson structure,” Journal of Differential Geometry 81 (2009) no. 2, 391–436.
  21. N. Do, “The asymptotic Weil-Petersson form and intersection theory on ℳ¯g,nsubscript¯ℳ𝑔𝑛\overline{\mathcal{M}}_{g,n}over¯ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT italic_g , italic_n end_POSTSUBSCRIPT,” arXiv preprint arXiv:1010.4126 (2010) .
  22. E. Witten, “Noncommutative geometry and string field theory,” Nucl. Phys. B 268 (1986) 253–294.
  23. W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces,” Bulletin of the American mathematical society 19 (1988) no. 2, 417–431.
  24. Princeton University Press, 2021.
  25. R. C. Penner and J. L. Harer, Combinatorics of train tracks. No. 125. Princeton University Press, 1992.
  26. A. Sen, “Off-shell amplitudes in superstring theory,” Fortsch. Phys. 63 (2015) 149–188, arXiv:1408.0571 [hep-th].
  27. C. de Lacroix, H. Erbin, S. P. Kashyap, A. Sen, and M. Verma, “Closed superstring field theory and its applications,” Int. J. Mod. Phys. A 32 (2017) no. 28n29, 1730021, arXiv:1703.06410 [hep-th].
  28. T. Erler, “Four lectures on closed string field theory,” Phys. Rept. 851 (2020) 1–36, arXiv:1905.06785 [hep-th].
  29. 3, 2021.
  30. G. McShane, “A remarkable identity for lengths of curves,” Ph. D. thesis, University of Warwick (1991) .
  31. N. Ishibashi and H. Kawai, “String field theory of noncritical strings,” Phys. Lett. B 314 (1993) 190–196, arXiv:hep-th/9307045.
  32. A. Jevicki and J. P. Rodrigues, “Loop space Hamiltonians and field theory of noncritical strings,” Nucl. Phys. B 421 (1994) 278–292, arXiv:hep-th/9312118.
  33. N. Ishibashi and H. Kawai, “String field theory of c≤1𝑐1c\leq 1italic_c ≤ 1 noncritical strings,” Phys. Lett. B 322 (1994) 67–78, arXiv:hep-th/9312047.
  34. M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, “String field theory in the temporal gauge,” Phys. Rev. D 50 (1994) 7467–7478, arXiv:hep-th/9406207.
  35. M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, “A note on string field theory in the temporal gauge,” Prog. Theor. Phys. Suppl. 118 (1995) 241–258, arXiv:hep-th/9409101.
  36. A. Sen, “Reality of superstring field theory action,” JHEP 11 (2016) 014, arXiv:1606.03455 [hep-th].
  37. R. Gopakumar, “From free fields to AdS. III,” Phys. Rev. D 72 (2005) 066008, arXiv:hep-th/0504229.
  38. F. Bhat, R. Gopakumar, P. Maity, and B. Radhakrishnan, “Twistor coverings and Feynman diagrams,” JHEP 05 (2022) 150, arXiv:2112.05115 [hep-th].
  39. Y. Okawa and B. Zwiebach, “Twisted tachyon condensation in closed string field theory,” JHEP 03 (2004) 056, arXiv:hep-th/0403051.
  40. H. Yang and B. Zwiebach, “A closed string tachyon vacuum?,” JHEP 09 (2005) 054, arXiv:hep-th/0506077.
  41. N. Moeller and H. Yang, “The nonperturbative closed string tachyon vacuum to high level,” JHEP 04 (2007) 009, arXiv:hep-th/0609208.
  42. J. Scheinpflug and M. Schnabl, “Closed string tachyon condensation revisited,” arXiv:2308.16142 [hep-th].
  43. A. S. Schwarz and A. M. Zeitlin, “Super Riemann surfaces and fatgraphs,” Universe 9 (2023) no. 9, 384.
  44. M. Mulase and M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over ℚ¯¯ℚ\overline{\mathbb{Q}}over¯ start_ARG blackboard_Q end_ARG," Asian Journal of Mathematics 2 (4),(1998) 875–920,” arXiv preprint math-ph/9811024 (1998) .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)