Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concatenate codes, save qubits (2402.09606v2)

Published 14 Feb 2024 in quant-ph

Abstract: The essential requirement for fault-tolerant quantum computation (FTQC) is the total protocol design to achieve a fair balance of all the critical factors relevant to its practical realization, such as the space overhead, the threshold, and the modularity. A major obstacle in realizing FTQC with conventional protocols, such as those based on the surface code and the concatenated Steane code, has been the space overhead, i.e., the required number of physical qubits per logical qubit. Protocols based on high-rate quantum low-density parity-check (LDPC) codes gather considerable attention as a way to reduce the space overhead, but problematically, the existing fault-tolerant protocols for such quantum LDPC codes sacrifice the other factors. Here we construct a new fault-tolerant protocol to meet these requirements simultaneously based on more recent progress on the techniques for concatenated codes rather than quantum LDPC codes, achieving a constant space overhead, a high threshold, and flexibility in modular architecture designs. In particular, under a physical error rate of $0.1\%$, our protocol reduces the space overhead to achieve the logical CNOT error rates $10{-10}$ and $10{-24}$ by more than $90 \%$ and $96 \%$, respectively, compared to the protocol for the surface code. Furthermore, our protocol achieves the threshold of $2.5 \%$ under a conventional circuit-level error model, substantially outperforming that of the surface code. The use of concatenated codes also naturally introduces abstraction layers essential for the modularity of FTQC architectures. These results indicate that the code-concatenation approach opens a way to significantly save qubits in realizing FTQC while fulfilling the other essential requirements for the practical protocol design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum low-density parity check codes with sublinear distance scaling, Phys. Rev. A 87, 020304 (2013).
  2. D. Gottesman, Fault-tolerant quantum computation with constant overhead, Quantum Info. Comput. 14, 1338–1372 (2014).
  3. O. Fawzi, A. Grospellier, and A. Leverrier, Constant overhead quantum fault-tolerance with quantum expander codes, in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (2018) pp. 743–754.
  4. H. Yamasaki and M. Koashi, Time-efficient constant-space-overhead fault-tolerant quantum computation, Nature Physics 20, 247 (2024).
  5. A. Krishna and D. Poulin, Fault-tolerant gates on hypergraph product codes, Phys. Rev. X 11, 011023 (2021).
  6. M. A. Tremblay, N. Delfosse, and M. E. Beverland, Constant-overhead quantum error correction with thin planar connectivity, Phys. Rev. Lett. 129, 050504 (2022).
  7. S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv:quant-ph/9811052 [quant-ph] (1998).
  8. A. M. Steane, Simple quantum error-correcting codes, Phys. Rev. A 54, 4741 (1996).
  9. R. W. Hamming, Error detecting and error correcting codes, The Bell system technical journal 29, 147 (1950).
  10. E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).
  11. D. Litinski and N. Nickerson, Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections, arXiv:2211.15465 [quant-ph] (2022).
  12. H. Goto, Step-by-step magic state encoding for efficient fault-tolerant quantum computation, Scientific Reports 4, 7501 (2014).
  13. H. Goto, Minimizing resource overheads for fault-tolerant preparation of encoded states of the steane code, Scientific Reports 6, 19578 (2016).
  14. B. Schumacher, Sending entanglement through noisy quantum channels, Phys. Rev. A 54, 2614 (1996).
  15. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
  16. C. Gidney and M. Ekerå, How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).
  17. R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM 21, 120 (1978).
  18. A. M. Steane, Overhead and noise threshold of fault-tolerant quantum error correction, Phys. Rev. A 68, 042322 (2003).
  19. O. Higgott, Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching, arXiv:2105.13082 [quant-ph] (2021).
  20. O. Higgott and C. Gidney, Sparse blossom: correcting a million errors per core second with minimum-weight matching, arXiv:2303.15933 [quant-ph] (2023).
  21. C. Gidney, Stability Experiments: The Overlooked Dual of Memory Experiments, Quantum 6, 786 (2022a).
  22. A. W. Cross, D. P. Divincenzo, and B. M. Terhal, A comparative code study for quantum fault tolerance, Quantum Info. Comput. 9, 541–572 (2009).
  23. C. Chamberland and P. Ronagh, Deep neural decoders for near term fault-tolerant experiments, Quantum Science and Technology 3, 044002 (2018).
  24. H. Goto and H. Uchikawa, Fault-tolerant quantum computation with a soft-decision decoder for error correction and detection by teleportation, Scientific reports 3, 2044 (2013).
  25. C. A. Pattison, A. Krishna, and J. Preskill, Hierarchical memories: Simulating quantum ldpc codes with local gates, arXiv:2303.04798 [quant-ph] (2023).
  26. M. Christandl and A. Müller-Hermes, Fault-tolerant coding for quantum communication, IEEE Transactions on Information Theory 70, 282 (2022).
  27. N. Baspin, O. Fawzi, and A. Shayeghi, A lower bound on the overhead of quantum error correction in low dimensions, arXiv:2302.04317 [quant-ph] (2023).
  28. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  29. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, in Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp. 13–58.
  30. C. Gidney, Stim: a fast stabilizer circuit simulator, Quantum 5, 497 (2021).
  31. Specifications - supercomputer fugaku: Fujitsu global, https://www.fujitsu.com/global/about/innovation/fugaku/specifications/ (2018).
  32. C. Wang, J. Harrington, and J. Preskill, Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics 303, 31–58 (2003).
  33. qpic, https://github.com/qpic/qpic (2016).
  34. D. Gottesman, Stabilizer codes and quantum error correction, Ph.D. thesis, California Institute of Technology (1997).
  35. M. M. Wilde, Logical operators of quantum codes, Phys. Rev. A 79, 062322 (2009).
  36. A. M. Steane, Fast fault-tolerant filtering of quantum codewords, arXiv:quant-ph/0202036 (2002).
  37. A. Paetznick and B. W. Reichardt, Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit golay code, Quantum Inf. Comput. 12, 1034 (2011).
  38. M. H. Freedman and D. A. Meyer, Projective plane and planar quantum codes, Foundations of Computational Mathematics 1, 325 (2001).
  39. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of physics 303, 2 (2003).
  40. H. Bombin and M. A. Martin-Delgado, Optimal resources for topological two-dimensional stabilizer codes: Comparative study, Physical Review A 76 (2007).
  41. C. Chamberland and E. T. Campbell, Universal quantum computing with twist-free and temporally encoded lattice surgery, PRX Quantum 3, 010331 (2022).
  42. A. G. Fowler and C. Gidney, Low overhead quantum computation using lattice surgery, arXiv:1808.06709 [quant-ph] (2019).
  43. C. Gidney, Stability experiments: The overlooked dual of memory experiments, Quantum 6, 786 (2022b).
  44. D. Poulin, Optimal and efficient decoding of concatenated quantum block codes, Phys. Rev. A 74, 052333 (2006).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com