Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Constraining neutrino-DM interactions with Milky Way dwarf spheroidals and supernova neutrinos (2402.08718v2)

Published 13 Feb 2024 in hep-ph, astro-ph.GA, and astro-ph.HE

Abstract: We constrain the neutrino-dark matter cross section using properties of the dark matter density profiles of Milky Way dwarf spheroidal galaxies. The constraint arises from core-collapse supernova neutrinos scattering on dark matter as a form of energy injection, allowing the transformation of the dark matter density profile from a cusped profile to a flatter profile. We assume a standard cosmology of dark energy and cold, collisionless, and non-self-interacting dark matter. By requiring that the dark matter cores do not lose too much mass or overshoot constraints from stellar kinematics, we place an upper limit on the cross section of $\sigma_{\nu-\mathrm{DM}}(E_\nu=15 \, \mathrm{MeV}, m_\chi\lesssim130 \, \mathrm{GeV}) \approx 3.4 \times 10{-23} \, \mathrm{cm2}$ and $\sigma_{\nu-\mathrm{DM}}(E_\nu=15 \, \mathrm{MeV}, m_\chi\gtrsim130 \, \mathrm{GeV}) \approx 3.2 \times 10{-27} \left( \frac{m_\chi}{1\,\mathrm{GeV}}\right)2\, \mathrm{cm2}$, which is stronger than previous bounds for these energies. Consideration of baryonic feedback or host galaxy effects on the dark matter profile can strengthen this constraint.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. T. Asaka, S. Blanchet, and M. Shaposhnikov, The ν𝜈\nuitalic_νMSM,dark matter and neutrino masses, Physics Letters B 631, 151 (2005).
  2. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73, 077301 (2006), arXiv:hep-ph/0601225 .
  3. Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys. Rev. D 86, 033007 (2012).
  4. A. de Gouvêa, Neutrino mass models, Annual Review of Nuclear and Particle Science 66, 197 (2016), https://doi.org/10.1146/annurev-nucl-102115-044600 .
  5. M. Escudero, N. Rius, and V. Sanz, Sterile neutrino portal to dark matter I: the U⁢(1)B−L𝑈subscript1𝐵𝐿{U}(1)_{B-L}italic_U ( 1 ) start_POSTSUBSCRIPT italic_B - italic_L end_POSTSUBSCRIPT case, Journal of High Energy Physics 2017, 45 (2017a).
  6. M. Escudero, N. Rius, and V. Sanz, Sterile neutrino portal to dark matter II: exact dark symmetry, The European Physical Journal C 77, 397 (2017b).
  7. A. Aguilar et al. (LSND Collaboration), Evidence for neutrino oscillations from the observation of ν¯esubscript¯𝜈𝑒{\overline{\nu}}_{e}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT appearance in a ν¯μsubscript¯𝜈𝜇{\overline{\nu}}_{\mu}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT beam, Phys. Rev. D 64, 112007 (2001).
  8. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Updated MiniBooNE neutrino oscillation results with increased data and new background studies, Phys. Rev. D 103, 052002 (2021).
  9. K.-Y. Choi, J. Kim, and C. Rott, Constraining dark matter-neutrino interactions with IceCube-170922a, Phys. Rev. D 99, 10.1103/physrevd.99.083018 (2019).
  10. F. Ferrer, G. Herrera, and A. Ibarra, New constraints on the dark matter-neutrino and dark matter-photon scattering cross sections from TXS 0506+056, J. Cosmol. Astropart. Phys. 2023 (05), 057.
  11. M. Fujiwara and G. Herrera, Tidal disruption events and dark matter scatterings with neutrinos and photons (2023), arXiv:2312.11670 [hep-ph] .
  12. R. J. Wilkinson, C. Bœhm, and J. Lesgourgues, Constraining dark matter-neutrino interactions using the CMB and large-scale structure, J. Cosmol. Astropart. Phys. 2014 (05), 011.
  13. K. Akita and S. Ando, Constraints on dark matter-neutrino scattering from the milky-way satellites and subhalo modeling for dark acoustic oscillations (2023), arXiv:2305.01913 [astro-ph.CO] .
  14. C. Bœhm, M. J. Dolan, and C. McCabe, A lower bound on the mass of cold thermal dark matter from planck, J. Cosmol. Astropart. Phys. 2013 (08), 041.
  15. D. C. Hooper and M. Lucca, Hints of dark matter-neutrino interactions in Lyman-α𝛼\alphaitalic_α data, Phys. Rev. D 105, 10.1103/physrevd.105.103504 (2022).
  16. M. R. Mosbech, C. Boehm, and Y. Y. Wong, Probing dark matter interactions with 21cm observations, J. Cosmol. Astropart. Phys. 2023 (03), 047.
  17. P. Fayet, D. Hooper, and G. Sigl, Constraints on light dark matter from core-collapse supernovae, Phys. Rev. Lett. 96, 211302 (2006).
  18. S. Koren, Neutrino-dark matter scattering and coincident detections of UHE neutrinos with EM sources, J. Cosmol. Astropart. Phys. 2019 (09), 013.
  19. K. Murase and I. M. Shoemaker, Neutrino echoes from multimessenger transient sources, Phys. Rev. Lett. 123, 10.1103/physrevlett.123.241102 (2019).
  20. J. A. Carpio, A. Kheirandish, and K. Murase, Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino interactions, J. Cosmol. Astropart. Phys. 2023 (04), 019.
  21. Y. Farzan and S. Palomares-Ruiz, Dips in the diffuse supernova neutrino background, J. Cosmol. Astropart. Phys. 2014 (06), 014.
  22. A. Das and M. Sen, Boosted dark matter from diffuse supernova neutrinos, Phys. Rev. D 104, 075029 (2021).
  23. W. Chao, T. Li, and J. Liao, Connecting primordial black hole to boosted sub-gev dark matter through neutrino (2021), arXiv:2108.05608 [hep-ph] .
  24. Y. Zhang, Speeding up dark matter with solar neutrinos, Progress of Theoretical and Experimental Physics 2022, 10.1093/ptep/ptab156 (2021).
  25. D. Ghosh, A. Guha, and D. Sachdeva, Exclusion limits on dark matter-neutrino scattering cross section, Phys. Rev. D 105, 10.1103/physrevd.105.103029 (2022).
  26. J. S. Bullock and M. Boylan-Kolchin, Small-scale challenges to the ΛΛ\Lambdaroman_ΛCDM paradigm, Annual Review of Astronomy and Astrophysics 55, 343 (2017), https://doi.org/10.1146/annurev-astro-091916-055313 .
  27. J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter Halos, Astrophys. J. 462, 563 (1996), arXiv:astro-ph/9508025 [astro-ph] .
  28. R. A. Flores and J. R. Primack, Observational and Theoretical Constraints on Singular Dark Matter Halos, Astrophys. J. Letters 427, L1 (1994), arXiv:astro-ph/9402004 [astro-ph] .
  29. B. Moore, Evidence against dissipation-less dark matter from observations of galaxy haloes, Nature 370, 629 (1994).
  30. D. N. Spergel and P. J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84, 3760 (2000).
  31. M. G. Walker and J. Peñarrubia, A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies, Astrophys. J. 742, 20 (2011).
  32. S.-H. Oh et al., High-resolution mass models of dwarf galaxies from LITTLE THINGS, Astron. J. 149, 180 (2015).
  33. J. F. Navarro, V. R. Eke, and C. S. Frenk, The cores of dwarf galaxy haloes, Mon. Not. Roy. Astron. Soc. 283, L72 (1996), https://academic.oup.com/mnras/article-pdf/283/3/L72/3305901/283-3-L72.pdf .
  34. A. Pontzen and F. Governato, How supernova feedback turns dark matter cusps into cores, Mon. Not. Roy. Astron. Soc. 421, 3464 (2012), https://academic.oup.com/mnras/article-pdf/421/4/3464/3832707/mnras0421-3464.pdf .
  35. W. D. Arnett, Gravitational collapse and weak interactions, Can. J. Phys. 44, 2553 (1966).
  36. S. A. Colgate and R. H. White, The hydrodynamic behavior of supernovae explosions, Astrophys. J. 143, 626 (1966).
  37. J. R. Wilson, Supernovae and Post-Collapse Behavior, in Numerical Astrophysics, edited by J. M. Centrella, J. M. Leblanc, and R. L. Bowers (Jones & Bartlett, Boston, 1985) p. 422.
  38. H. A. Bethe and J. R. Wilson, Revival of a stalled supernova shock by neutrino heating, Astrophys. J. 295, 14 (1985).
  39. H. A. Bethe, Supernova mechanisms, Rev. Mod. Phys. 62, 801 (1990).
  40. A. Burrows and J. Goshy, A theory of supernova explosions, Astrophys. J. 416, L75 (1993).
  41. H.-T. Janka, Explosion mechanisms of core-collapse supernovae, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).
  42. J. D. Simon et al., A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy, Astrophys. J. 733, 46 (2011a), arXiv:1007.4198 [astro-ph.GA] .
  43. S. E. Koposov et al., Accurate Stellar Kinematics at Faint Magnitudes: application to the Bootes~I dwarf spheroidal galaxy, Astrophys. J. 736, 146 (2011a), arXiv:1105.4102 [astro-ph.GA] .
  44. J. D. Simon and M. Geha, The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem, Astrophys. J. 670, 313 (2007a), arXiv:0706.0516 [astro-ph] .
  45. J. D. Simon et al. (DES), Stellar Kinematics and Metallicities in the Ultra-Faint Dwarf Galaxy Reticulum II, Astrophys. J. 808, 95 (2015), arXiv:1504.02889 [astro-ph.GA] .
  46. N. F. Martin et al., Is Draco II one of the faintest dwarf galaxies? First study from Keck/DEIMOS spectroscopy, Mon. Not. Roy. Astron. Soc. 458, L59 (2016), arXiv:1510.01326 [astro-ph.GA] .
  47. E. N. Kirby, J. D. Simon, and J. G. Cohen, Spectroscopic Confirmation of the Dwarf Galaxies Hydra II and Pisces II and the Globular Cluster Laevens 1, Astrophys. J. 810, 56 (2015), arXiv:1506.01021 [astro-ph.GA] .
  48. M. G. Walker et al., Magellan/M2FS spectroscopy of Tucana 2 and Grus 1, Astrophys. J. 819, 53 (2016), arXiv:1511.06296 [astro-ph.GA] .
  49. S. E. Koposov et al., Kinematics and chemistry of recently discovered Reticulum 2 and Horologium 1 dwarf galaxies, Astrophys. J. 811, 62 (2015a), arXiv:1504.07916 [astro-ph.GA] .
  50. J. D. Simon et al. (DES), Nearest Neighbor: The Low-Mass Milky Way Satellite Tucana III, Astrophys. J. 838, 11 (2017), arXiv:1610.05301 [astro-ph.GA] .
  51. M. G. Walker, E. W. Olszewski, and M. Mateo, Bayesian analysis of resolved stellar spectra: application to MMT/Hectochelle observations of the Draco dwarf spheroidal, Mon. Not. Roy. Astron. Soc. 448, 2717 (2015), arXiv:1503.02589 [astro-ph.GA] .
  52. M. Fabrizio et al., The Carina Project. X. On the Kinematics of Old and Intermediate-age Stellar Populations1,2, Astrophys. J. 830, 126 (2016), arXiv:1607.03181 [astro-ph.GA] .
  53. M. Mateo, E. W. Olszewski, and M. G. Walker, The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo. 1. A Tidal Hit and Run?, Astrophys. J. 675, 201 (2008a), arXiv:0708.1327 [astro-ph] .
  54. A. El-Zant, I. Shlosman, and Y. Hoffman, Dark halos: The flattening of the density cusp by dynamical friction, Astrophys. J. 560, 636 (2001).
  55. J. I. Read and G. Gilmore, Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles, Mon. Not. Roy. Astron. Soc. 356, 107 (2005).
  56. S. Mashchenko, J. Wadsley, and H. M. P. Couchman, Stellar feedback in dwarf galaxy formation, Science 319, 174 (2008).
  57. F. Governato et al., Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature 463, 203 (2010).
  58. D. R. Cole, W. Dehnen, and M. I. Wilkinson, Weakening dark matter cusps by clumpy baryonic infall, Mon. Not. Roy. Astron. Soc. 416, 1118 (2011).
  59. A. M. Brooks and A. Zolotov, Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites, Astrophys. J. 786, 87 (2014), arXiv:1207.2468 [astro-ph.CO] .
  60. J. Chang, A. V. Maccio’, and X. Kang, The dependence of tidal stripping efficiency on the satellite and host galaxy morphology, Mon. Not. Roy. Astron. Soc. 431, 3533 (2013), arXiv:1212.3408 [astro-ph.CO] .
  61. S. Kazantzidis, E. L. Lokas, and L. Mayer, Tidal Stirring of Disky Dwarfs with Shallow Dark Matter Density Profiles: Enhanced Transformation into Dwarf Spheroidals, Astrophys. J. Lett. 764, L29 (2013), arXiv:1302.0008 [astro-ph.CO] .
  62. C. Nipoti and J. Binney, Early flattening of dark matter cusps in dwarf spheroidal galaxies, Mon. Not. Roy. Astron. Soc. 446, 1820 (2015), arXiv:1410.6169 [astro-ph.GA] .
  63. J. I. Read, O. Agertz, and M. L. M. Collins, Dark matter cores all the way down, Mon. Not. Roy. Astron. Soc. 459, 2573 (2016), arXiv:1508.04143 [astro-ph.GA] .
  64. E. Tollet et al., NIHAO – IV: core creation and destruction in dark matter density profiles across cosmic time, Mon. Not. Roy. Astron. Soc. 456, 3542 (2016).
  65. A. Fitts et al., fire in the field: simulating the threshold of galaxy formation, Mon. Not. Roy. Astron. Soc. 471, 3547 (2017).
  66. N. Hiroshima, S. Ando, and T. Ishiyama, Modeling evolution of dark matter substructure and annihilation boost, Phys. Rev. D 97, 123002 (2018), arXiv:1803.07691 [astro-ph.CO] .
  67. A. Lazar et al., A dark matter profile to model diverse feedback-induced core sizes of ΛΛ\mathrm{\Lambda}roman_ΛCDM haloes, Mon. Not. Roy. Astron. Soc. 497, 2393 (2020).
  68. J. D. Burger and J. Zavala, Supernova-driven mechanism of cusp-core transformation: an appraisal, Astrophys. J. 921, 126 (2021).
  69. M. T. Keil, G. G. Raffelt, and H.-T. Janka, Monte carlo study of supernova neutrino spectra formation, Astrophys. J. 590, 971 (2003).
  70. T. A. Thompson, A. Burrows, and P. A. Pinto, Shock breakout in core-collapse supernovae and its neutrino signature, Astrophys. J. 592, 434 (2003).
  71. P. Kroupa, The initial mass function of stars: Evidence for uniformity in variable systems, Science 295, 82 (2002).
  72. S. J. Smartt, Progenitors of core-collapse supernovae, Annu. Rev. Astron. Astrophys. 47, 63 (2009).
  73. J. Grcevich and M. E. Putman, H I in the local group dwarf galaxies and stripping by the galactic halo, Astrophys. J. 696, 385 (2009).
  74. J. D. Simon et al., A complete spectroscopic survey of the Milky Way satellite Segue 1: the darkest galaxy*superscriptgalaxy\mathrm{galaxy}^{*}roman_galaxy start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT, Astrophys. J. 733, 46 (2011b).
  75. S. E. Koposov et al., Accurate stellar kinematics at faint magnitudes: Application to the Boötes I dwarf spheroidal galaxy, Astrophys. J. 736, 146 (2011b).
  76. J. D. Simon and M. Geha, The kinematics of the ultra-faint Milky Way satellites: Solving the missing satellite problem, Astrophys. J. 670, 313 (2007b).
  77. S. E. Koposov et al., Kinematics and chemistry of recently discovered Reticulum 2 and Horologium 1 dwarf galaxies, Astrophys. J. 811, 62 (2015c).
  78. A. W. McConnachie, The observed properties of dwarf galaxies in and around the local group, Astron. J. 144, 4 (2012).
  79. A. Drlica-Wagner et al. (The DES Collaboration), Eight ultra-faint galaxy candidates discovered in year two of the dark energy survey, Astrophys. J. 813, 109 (2015).
  80. A. Bouchard, C. Carignan, and L. Staveley-Smith, Neutral hydrogen clouds near early-type dwarf galaxies of the local group, Astron. J. 131, 2913 (2006).
  81. M. Mateo, E. W. Olszewski, and M. G. Walker, The velocity dispersion profile of the remote dwarf spheroidal galaxy Leo i: A tidal hit and run?, Astrophys. J. 675, 201 (2008b).
  82. M. Aartsen et al. (The IceCube Collaboration and Fermi-LAT and MAGIC and AGILE and ASAS-SN and HAWC and H.E.S.S. and INTEGRAL and Kanata and Kiso and Kapteyn and Liverpool Telescope and Subaru and Swift/NuSTAR and VERITAS and VLA/17B-403 teams), Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361, eaat1378 (2018).
  83. R. Stein et al., A tidal disruption event coincident with a high-energy neutrino, Nature Astron. 5, 510 (2021), arXiv:2005.05340 [astro-ph.HE] .
  84. C. A. Argüelles, A. Kheirandish, and A. C. Vincent, Imaging galactic dark matter with high-energy cosmic neutrinos, Phys. Rev. Lett. 119, 201801 (2017).
  85. Y.-F. Li, M. Vagins, and M. Wurm, Prospects for the detection of the diffuse supernova neutrino background with the experiments SK-Gd and JUNO, Universe 8, 181 (2022).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.