Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Barycentric and Pairwise Renyi Quantum Leakage (2402.06156v1)

Published 9 Feb 2024 in quant-ph, cs.CR, cs.IT, and math.IT

Abstract: Barycentric and pairwise quantum Renyi leakages are proposed as two measures of information leakage for privacy and security analysis in quantum computing and communication systems. These quantities both require minimal assumptions on the eavesdropper, i.e., they do not make any assumptions on the eavesdropper's attack strategy or the statistical prior on the secret or private classical data encoded in the quantum system. They also satisfy important properties of positivity, independence, post-processing inequality, and unitary invariance. The barycentric quantum Renyi leakage can be computed by solving a semi-definite program and the pairwise quantum Renyi leakage possesses an explicit formula. The barycentric and pairwise quantum Renyi leakages form upper bounds on the maximal quantum leakage, the sandwiched quantum $\alpha$-mutual information, the accessible information, and the Holevo's information. Furthermore, differentially-private quantum channels are shown to bound these measures of information leakage. Global and local depolarizing channels, that are common models of noise in quantum computing and communication, restrict private or secure information leakage. Finally, a privacy-utility trade-off formula in quantum machine learning using variational circuits is developed. The privacy guarantees can only be strengthened, i.e., information leakage can only be reduced, if the performance degradation grows larger and vice versa.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, Ieee, 1994.
  2. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Physical review letters, vol. 85, no. 2, p. 441, 2000.
  3. M. T. West, S.-L. Tsang, J. S. Low, C. D. Hill, C. Leckie, L. C. Hollenberg, S. M. Erfani, and M. Usman, “Towards quantum enhanced adversarial robustness in machine learning,” Nature Machine Intelligence, pp. 1–9, 2023.
  4. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
  5. M. Kearns and A. Roth, The ethical algorithm: The science of socially aware algorithm design. Oxford University Press, 2019.
  6. F. Farokhi, “Maximal information leakage from quantum encoding of classical data,” arXiv preprint arXiv:2307.12529, 2023.
  7. I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1625–1657, 2019.
  8. F. Farokhi and N. Ding, “Measuring information leakage in non-stochastic brute-force guessing,” in 2020 IEEE Information Theory Workshop (ITW), pp. 1–5, 2021.
  9. J. Řeháček, B.-G. Englert, and D. Kaszlikowski, “Iterative procedure for computing accessible information in quantum communication,” Physical Review A, vol. 71, no. 5, p. 054303, 2005.
  10. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, “On quantum Rényi entropies: A new generalization and some properties,” Journal of Mathematical Physics, vol. 54, no. 12, 2013.
  11. K. M. R. Audenaert and N. Datta, “α𝛼\alphaitalic_α-z𝑧zitalic_z-Rényi relative entropies,” Journal of Mathematical Physics, vol. 56, no. 2, p. 022202, 2015.
  12. C. Hirche, C. Rouzé, and D. S. França, “Quantum differential privacy: An information theory perspective,” IEEE Transactions on Information Theory, 2023.
  13. A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, vol. 4, pp. 547–562, 1961.
  14. T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler divergence,” IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3797–3820, 2014.
  15. J. A. Thomas and T. M. Cover, Elements of Information Theory. Wiley, 2012.
  16. S. Verdú, “α𝛼\alphaitalic_α-mutual information,” in 2015 Information Theory and Applications Workshop (ITA), pp. 1–6, IEEE, 2015.
  17. M. Wilde, Quantum Information Theory. Cambridge University Press, 2013.
  18. D. Petz, “Quasi-entropies for finite quantum systems,” Reports on Mathematical Physics, vol. 23, no. 1, pp. 57–65, 1986.
  19. H. Umegaki, “Conditional expectation in an operator algebra, IV (entropy and information),” in Kodai Mathematical Seminar Reports, vol. 14, pp. 59–85, Department of Mathematics, Tokyo Institute of Technology, 1962.
  20. R. Bhatia, Matrix Analysis. Graduate Texts in Mathematics, Springer New York, 2013.
  21. M. Mosonyi, G. Bunth, and P. Vrana, “Geometric relative entropies and barycentric Rényi divergences,” arXiv preprint arXiv:2207.14282, 2022.
  22. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11, 1973.
  23. C. Dwork, “Differential privacy: A survey of results,” in International Conference on Theory and Applications of Models of Computation, pp. 1–19, Springer, 2008.
  24. L. Zhou and M. Ying, “Differential privacy in quantum computation,” in 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 249–262, IEEE, 2017.
  25. S. Aaronson and G. N. Rothblum, “Gentle measurement of quantum states and differential privacy,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 322–333, 2019.
  26. F. Farokhi, “Quantum privacy and hypothesis-testing,” in 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 2841–2846, 2023.
  27. D. G. Bussandri, G. Rajchel-Mieldzioć, P. W. Lamberti, and K. Życzkowski, “Rényi-holevo inequality from α𝛼\alphaitalic_α-z𝑧zitalic_z-Rényi relative entropies,” arXiv preprint arXiv:2309.04539, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.