Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal Information Leakage from Quantum Encoding of Classical Data (2307.12529v2)

Published 24 Jul 2023 in quant-ph, cs.CR, cs.IT, and math.IT

Abstract: A new measure of information leakage for quantum encoding of classical data is defined. An adversary can access a single copy of the state of a quantum system that encodes some classical data and is interested in correctly guessing a general randomized or deterministic function of the data (e.g., a specific feature or attribute of the data in quantum machine learning) that is unknown to the security analyst. The resulting measure of information leakage, referred to as maximal quantum leakage, is the multiplicative increase of the probability of correctly guessing any function of the classical data upon observing measurements of the quantum state. Maximal quantum leakage is shown to satisfy post-processing inequality (i.e., applying a quantum channel reduces information leakage) and independence property (i.e., leakage is zero if the quantum state is independent of the classical data), which are fundamental properties required for privacy and security analysis. It also bounds accessible information. Effects of global and local depolarizing noise models on the maximal quantum leakage are established.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. L. Zhou and M. Ying, Differential privacy in quantum computation, in 2017 IEEE 30th Computer Security Foundations Symposium (CSF) (IEEE, 2017) pp. 249–262.
  2. C. Hirche, C. Rouzé, and D. S. França, Quantum differential privacy: An information theory perspective, IEEE Transactions on Information Theory  (2023).
  3. S. Aaronson and G. N. Rothblum, Gentle measurement of quantum states and differential privacy, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) pp. 322–333.
  4. T. Nuradha, Z. Goldfeld, and M. M. Wilde, Quantum pufferfish privacy: A flexible privacy framework for quantum systems, arXiv preprint arXiv:2306.13054  (2023).
  5. F. Farokhi, Privacy against hypothesis-testing adversaries for quantum computing, arXiv preprint arXiv:2302.12405  (2023).
  6. N. Cai, A. Winter, and R. W. Yeung, Quantum privacy and quantum wiretap channels, Problems of Information Transmission 40, 318 (2004).
  7. I. Issa, A. B. Wagner, and S. Kamath, An operational approach to information leakage, IEEE Transactions on Information Theory 66, 1625 (2019).
  8. F. Farokhi and N. Ding, Measuring information leakage in non-stochastic brute-force guessing, in 2020 IEEE Information Theory Workshop (ITW) (IEEE, 2021) pp. 1–5.
  9. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013).
  10. A. S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel, Problemy Peredachi Informatsii 9, 3 (1973).
  11. E. Davies, Information and quantum measurement, IEEE Transactions on Information Theory 24, 596 (1978).
  12. J. Řeháček, B.-G. Englert, and D. Kaszlikowski, Iterative procedure for computing accessible information in quantum communication, Physical Review A 71, 054303 (2005).
  13. S. Resch and U. R. Karpuzcu, Benchmarking quantum computers and the impact of quantum noise, ACM Computing Surveys (CSUR) 54, 1 (2021).
  14. W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer Optimization and Its Applications (Springer US, 2006).
  15. A. R. Esposito, M. Gastpar, and I. Issa, A new approach to adaptive data analysis and learning via maximal leakage, arXiv preprint arXiv:1903.01777  (2019).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com