Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing Graph Representation Learning with Large Language Models: A Comprehensive Survey of Techniques (2402.05952v1)

Published 4 Feb 2024 in cs.LG, cs.AI, and cs.CL

Abstract: The integration of LLMs with Graph Representation Learning (GRL) marks a significant evolution in analyzing complex data structures. This collaboration harnesses the sophisticated linguistic capabilities of LLMs to improve the contextual understanding and adaptability of graph models, thereby broadening the scope and potential of GRL. Despite a growing body of research dedicated to integrating LLMs into the graph domain, a comprehensive review that deeply analyzes the core components and operations within these models is notably lacking. Our survey fills this gap by proposing a novel taxonomy that breaks down these models into primary components and operation techniques from a novel technical perspective. We further dissect recent literature into two primary components including knowledge extractors and organizers, and two operation techniques including integration and training stratigies, shedding light on effective model design and training strategies. Additionally, we identify and explore potential future research avenues in this nascent yet underexplored field, proposing paths for continued progress.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com