Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Hierarchical Classification Performance for Time Series Data: Dissimilarity Measures and Classifier Comparisons (2402.05275v1)

Published 7 Feb 2024 in cs.LG

Abstract: The comparative performance of hierarchical classification (HC) and flat classification (FC) methodologies in the realm of time series data analysis is investigated in this study. Dissimilarity measures, including Jensen-Shannon Distance (JSD), Task Similarity Distance (TSD), and Classifier Based Distance (CBD), are leveraged alongside various classifiers such as MINIROCKET, STSF, and SVM. A subset of datasets from the UCR archive, focusing on multi-class cases comprising more than two classes, is employed for analysis. A significant trend is observed wherein HC demonstrates significant superiority over FC when paired with MINIROCKET utilizing TSD, diverging from conventional understandings. Conversely, FC exhibits consistent dominance across all configurations when employing alternative classifiers such as STSF and SVM. Moreover, TSD is found to consistently outperform both CBD and JSD across nearly all scenarios, except in instances involving the STSF classifier where CBD showcases superior performance. This discrepancy underscores the nuanced nature of dissimilarity measures and emphasizes the importance of their tailored selection based on the dataset and classifier employed. Valuable insights into the dynamic interplay between classification methodologies and dissimilarity measures in the realm of time series data analysis are provided by these findings. By elucidating the performance variations across different configurations, a foundation is laid for refining classification methodologies and dissimilarity measures to optimize performance in diverse analytical scenarios. Furthermore, the need for continued research aimed at elucidating the underlying mechanisms driving classification performance in time series data analysis is underscored, with implications for enhancing predictive modeling and decision-making in various domains.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets