Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proximity Forest 2.0: A new effective and scalable similarity-based classifier for time series (2304.05800v2)

Published 12 Apr 2023 in cs.LG and cs.AI

Abstract: Time series classification (TSC) is a challenging task due to the diversity of types of feature that may be relevant for different classification tasks, including trends, variance, frequency, magnitude, and various patterns. To address this challenge, several alternative classes of approach have been developed, including similarity-based, features and intervals, shapelets, dictionary, kernel, neural network, and hybrid approaches. While kernel, neural network, and hybrid approaches perform well overall, some specialized approaches are better suited for specific tasks. In this paper, we propose a new similarity-based classifier, Proximity Forest version 2.0 (PF 2.0), which outperforms previous state-of-the-art similarity-based classifiers across the UCR benchmark and outperforms state-of-the-art kernel, neural network, and hybrid methods on specific datasets in the benchmark that are best addressed by similarity-base methods. PF 2.0 incorporates three recent advances in time series similarity measures -- (1) computationally efficient early abandoning and pruning to speedup elastic similarity computations; (2) a new elastic similarity measure, Amerced Dynamic Time Warping (ADTW); and (3) cost function tuning. It rationalizes the set of similarity measures employed, reducing the eight base measures of the original PF to three and using the first derivative transform with all similarity measures, rather than a limited subset. We have implemented both PF 1.0 and PF 2.0 in a single C++ framework, making the PF framework more efficient.

Citations (7)

Summary

We haven't generated a summary for this paper yet.