Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-reversible lifts of reversible diffusion processes and relaxation times (2402.05041v3)

Published 7 Feb 2024 in math.PR, cs.NA, math.AP, math.NA, math.ST, stat.CO, and stat.TH

Abstract: We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space-time Poincar\'e inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. “Variational methods for the kinetic Fokker-Planck equation” to appear In Anal. & PDE, 2023
  2. Chérif Amrouche, Philippe G. Ciarlet and Cristinel Mardare “On a lemma of Jacques-Louis Lions and its relation to other fundamental results” In J. Math. Pures Appl. 104.2, 2015, pp. 207–226 DOI: 10.1016/j.matpur.2014.11.007
  3. Anton Arnold, Christian Schmeiser and Beatrice Signorello “Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift” In Commun. Math. Sci. 20.4, 2022, pp. 1047–1080 DOI: 10.3934/krm.2022009
  4. Dominique Bakry, Ivan Gentil and Michel Ledoux “Analysis and Geometry of Markov Diffusion Operators” 348, Grundlehren der mathematischen Wissenschaften Cham: Springer, 2014 DOI: 10.1007/978-3-319-00227-9
  5. Etienne P. Bernard, Werner Krauth and David B. Wilson “Event-chain Monte Carlo algorithms for hard-sphere systems” In Phys. Rev. E 80, 2009, pp. 056704 DOI: 10.1103/PhysRevE.80.056704
  6. Joris Bierkens, Paul Fearnhead and Gareth Roberts “The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data” In Ann. Statist. 47.3 Institute of Mathematical Statistics, 2019, pp. 1288–1320 DOI: 10.1214/18-AOS1715
  7. “A piecewise deterministic scaling limit of lifted Metropolis–Hastings in the Curie–Weiss model” In Ann. Appl. Prob. 27.2 Institute of Mathematical Statistics, 2017, pp. 846–882 DOI: 10.1214/16-AAP1217
  8. Nawaf Bou-Rabee, Andreas Eberle and Raphael Zimmer “Coupling and convergence for Hamiltonian Monte Carlo” In Ann. Appl. Probab. 30.3 Institute of Mathematical Statistics, 2020, pp. 1209–1250 DOI: 10.1214/19-AAP1528
  9. Nawaf Bou-Rabee and Jesús María Sanz-Serna “Randomized Hamiltonian Monte Carlo” In Ann. Appl. Probab. 27.4 Institute of Mathematical Statistics, 2017, pp. 2159–2194 DOI: 10.1214/16-AAP1255
  10. Alexandre Bouchard-Côté, Sebastian J. Vollmer and Arnaud Doucet “The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method” In J. Am. Stat. Assoc. 113.522 Taylor & Francis, 2018, pp. 855–867 DOI: 10.1080/01621459.2017.1294075
  11. Giovanni Brigati “Time averages for kinetic Fokker-Planck equations”, 2022 arXiv:2106.12801 [math.AP]
  12. “How to construct decay rates for kinetic Fokker–Planck equations?”, 2023 arXiv:2302.14506 [math.AP]
  13. Yu Cao, Jianfeng Lu and Lihan Wang “On explicit L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-convergence rate estimate for underdamped Langevin dynamics” In Arch. Ration. Mech. Anal. 247.90 Springer Berlin Heidelberg, 2023 DOI: 10.1007/s00205-023-01922-4
  14. Sourav Chatterjee “Spectral gap of nonreversible Markov chains”, 2023 arXiv:2310.10876 [math.PR]
  15. Fang Chen, László Lovász and Igor Pak “Lifting Markov Chains to Speed up Mixing” In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99, 1999, pp. 275–281 DOI: 10.1145/301250.301315
  16. “Accelerating reversible Markov chains” In Stat. Probab. Lett. 83.9, 2013, pp. 1956–1962 DOI: 10.1016/j.spl.2013.05.002
  17. Arnak S. Dalalyan and Lionel Riou-Durand “On sampling from a log-concave density using kinetic Langevin diffusions” In Bernoulli 26.3 Bernoulli Society for Mathematical StatisticsProbability, 2020, pp. 1956–1988 DOI: 10.3150/19-BEJ1178
  18. Persi Diaconis, Susan Holmes and Radford M. Neal “Analysis of a nonreversible Markov chain sampler” In Ann. Appl. Probab. 10.3 Institute of Mathematical Statistics, 2000, pp. 726–752 DOI: 10.1214/aoap/1019487508
  19. Alain Durmus, Arnaud Guillin and Pierre Monmarché “Piecewise deterministic Markov processes and their invariant measures” In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 57.3 Institut Henri Poincaré, 2021, pp. 1442–1475 DOI: 10.1214/20-AIHP1125
  20. Andreas Eberle “Lecture Notes “Markov processes”” http://wt.iam.uni-bonn.de/eberle/home/, Institute for Applied Mathematics, University of Bonn, 2023
  21. Andreas Eberle, Arnaud Guillin and Raphael Zimmer “Couplings and quantitative contraction rates for Langevin dynamics” In Ann. Probab. 47.4 Institute of Mathematical Statistics, 2019, pp. 1982–2010 DOI: 10.1214/18-AOP1299
  22. “Quantitative divergence lemmas on time-space domains” in preparation
  23. “One-Parameter Semigroups for Linear Evolution Equations” 194, Graduate Texts in Mathematics Springer New York, 1999 DOI: 10.1007/b97696
  24. Khashayar Gatmiry and Santosh S. Vempala “Convergence of the Riemannian Langevin Algorithm”, 2022 arXiv:2204.10818v1 [cs.LG]
  25. “Optimal linear drift for the speed of convergence of an hypoelliptic diffusion” In Electron. Commun. Probab. 21 Institute of Mathematical StatisticsBernoulli Society, 2016, pp. 1–14 DOI: 10.1214/16-ECP25
  26. “Geometric Analysis of the Linear Boltzmann Equation I. Trend to Equilibrium” In Ann. PDE 1.3, 2015 DOI: 10.1007/s40818-015-0003-z
  27. Frédéric Hérau “Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation” In Asymptot. Anal. 46.3-4, 2006, pp. 349–359
  28. James G. Hooton “Compact Sobolev imbeddings on finite measure spaces” In J. Math. Anal. Appl. 83.2, 1981, pp. 570–581 DOI: 10.1016/0022-247X(81)90142-6
  29. Chii-Ruey Hwang, Shu-Yin Hwang-Ma and Shuenn-Jyi Sheu “Accelerating Gaussian Diffusions” In Ann. Appl. Prob. 3.3 Institute of Mathematical Statistics, 1993, pp. 897–913 DOI: 10.1214/aoap/1177005371
  30. Chii-Ruey Hwang, Shu-Yin Hwang-Ma and Shuenn-Jyi Sheu “Accelerating Diffusions” In Ann. Appl. Prob. 15.2 Institute of Mathematical Statistics, 2005, pp. 1433–1444 DOI: 10.1214/105051605000000025
  31. T. Komorowski, C. Landim and S. Olla “Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation” 345, Grundlehren der mathematischen Wissenschaften Berlin: Springer, 2012 DOI: 10.1007/978-3-642-29880-6
  32. Werner Krauth “Event-Chain Monte Carlo: Foundations, Applications, and Prospects” In Front. Phys. 9, 2021 DOI: 10.3389/fphy.2021.663457
  33. “Mixing and perfect sampling in one-dimensional particle systems” In EPL 124.2 EDP Sciences, IOP PublishingSocietà Italiana di Fisica, 2018 DOI: 10.1209/0295-5075/124/20003
  34. Tony Lelièvre, Francis Nier and Grigorios Pavliotis “Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion” In J. Stat. Phys. 152, 2013, pp. 237–274 DOI: 10.1007/s10955-013-0769-x
  35. David A. Levin, Yuval Peres and Elizabeth L. Wilmer “Markov Chains and Mixing Times” Providence, Rhode Island: American Mathematical Society, 2017 DOI: 10.1090/mbk/107
  36. “On explicit L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms” In Ann. Appl. Probab. 32.2, 2022, pp. 1333–1361 DOI: 10.1214/21-AAP1710
  37. Manon Michel, Sebastian C. Kapfer and Werner Krauth “Generalized event-chain Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesimal steps” In J. Chem. Phys. 140.5, 2014, pp. 054116 DOI: 10.1063/1.4863991
  38. Pierre Monmarché “A note on Fisher Information hypocoercive decay for the linear Boltzmann equation”, 2020 arXiv:1703.10504 [math.AP]
  39. Pierre Monmarché “High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion.” In Electron. J. Statist. 15.2 Institute of Mathematical StatisticsBernoulli Society, 2021, pp. 4117–4166 DOI: 10.1214/21-EJS1888
  40. Radford M. Neal “MCMC using Hamiltonian dynamics” In Handbook of Markov Chain Monte Carlo, Handbooks of Modern Statistical Methods New York: CRC Press, 2011, pp. 113–162 DOI: 10.1201/b10905
  41. Grigorios A. Pavliotis “Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations” 60, Texts in Applied Mathematics New York: Springer, 2014 DOI: 10.1007/978-1-4939-1323-7
  42. Laurent Saloff-Coste “Lectures on finite Markov chains” In Lectures on Probability Theory and Statistics: École d’Été de Probabilités de Saint-Flour XXVI-1996 Berlin: Springer, 1997, pp. 301–413 DOI: 10.1007/BFb0092621
  43. Ken-Iti Sato “Potential Operators for Markov Processes” In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory, 1972 DOI: 10.1525/9780520375918-013
  44. Wilhelm Stannat “(Nonsymmetric) Dirichlet operators on L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT: existence, uniqueness and associated Markov processes” In Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28.1 Scuola normale superiore, 1999, pp. 99–140 URL: http://eudml.org/doc/84374
  45. Karl-Theodor Sturm “Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-Liouville properties” In J. Reine Angew. Math. 456, 1994, pp. 173–196 DOI: 10.1515/crll.1994.456.173
  46. Norbert Wielens “The essential selfadjointness of generalized Schrödinger operators” In J. Funct. Anal. 61.1, 1985, pp. 98–115 DOI: 10.1016/0022-1236(85)90040-0
Citations (7)

Summary

We haven't generated a summary for this paper yet.