Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FLAGRED -- Fuzzy Logic-based Algorithm Generalizing Risk Estimation for Drones (2402.04518v1)

Published 7 Feb 2024 in cs.RO

Abstract: Accurately estimating risk in real-time is essential for ensuring the safety and efficiency of many applications involving autonomous robot systems. This paper presents a novel, generalizable algorithm for the real-time estimation of risks created by external disturbances on multirotors. Unlike conventional approaches, our method requires no additional sensors, accurate drone models, or large datasets. It employs motor command data in a fuzzy logic system, overcoming barriers to real-world implementation. Inherently adaptable, it utilizes fundamental drone characteristics, making it applicable to diverse drone models. The efficiency of the algorithm has been confirmed through comprehensive real-world testing on various platforms. It proficiently discerned between high and low-risk scenarios resulting from diverse wind disturbances and varying thrust-to-weight ratios. The algorithm surpassed the widely-recognized ArduCopter wind estimation algorithm in performance and demonstrated its capability to promptly detect brief gusts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M.-A. Leclerc, J. Bass, M. Labbé, D. Dozois, J. Delisle, D. Rancourt, and A. Lussier Desbiens, “Netherdrone: a tethered and ducted propulsion multirotor drone for complex underground mining stope inspections,” Drone Systems and Applications, vol. 11, pp. 1–17, 2023.
  2. L. Petit and A. L. Desbiens, “Tape: Tether-aware path planning for autonomous exploration of unknown 3d cavities using a tangle-compatible tethered aerial robot,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 550–10 557, 2022.
  3. H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48 572–48 634, 2019.
  4. B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and D. Alghazzawi, “Uav assistance paradigm: State-of-the-art in applications and challenges,” Journal of Network and Computer Applications, vol. 166, p. 102706, 2020.
  5. N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen, “Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities,” IEEE Communications Magazine, vol. 56, no. 8, pp. 26–32, 2018.
  6. M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wireless networks: Applications, challenges, and open problems,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
  7. M. Gao, C. H. Hugenholtz, T. A. Fox, M. Kucharczyk, T. E. Barchyn, and P. R. Nesbit, “Weather constraints on global drone flyability,” Scientific Reports, vol. 11, no. 1, p. 12092, Jun 2021.
  8. H. la Vigne, G. Charron, S. Hovington, and A. L. Desbiens, “Assisted canopy sampling using unmanned aerial vehicles (uavs),” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS), 2021, pp. 1642–1647.
  9. H. La Vigne, G. Charron, J. Rachiele-Tremblay, D. Rancourt, B. Nyberg, and A. Lussier Desbiens, “Collecting critically endangered cliff plants using a drone-based sampling manipulator,” Scientific Reports, vol. 12, no. 1, p. 14827, Sep 2022.
  10. J. L. Drury, L. Riek, and N. Rackliffe, “A decomposition of uav-related situation awareness,” in Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction.   New York, NY, USA: Association for Computing Machinery, 2006, p. 88–94.
  11. L. Xinghua, K. Yu, D. Yifan, and X. Hongsheng, “Stability analysis of linear systems with saturating actuators,” 2011, pp. 2341 – 6.
  12. L. Scicluna, T. Sant, and R. N. Farrugia, “Validation of wind measurements from a multirotor rpas-mounted ultrasonic wind sensor using a ground-based lidar system,” Drone Systems and Applications, vol. 11, pp. 1 – 17, 2023.
  13. N. Simon, A. Ren, A. Pique, D. Snyder, D. Barretto, M. Hultmark, and A. Majumdar, “Flowdrone: wind estimation and gust rejection on uavs using fast-response hot-wire flow sensors [arxiv],” arXiv, 2022/10/11.
  14. P. Abichandani, D. Lobo, G. Ford, D. Bucci, and M. Kam, “Wind measurement and simulation techniques in multi-rotor small unmanned aerial vehicles,” IEEE Access, vol. 8, pp. 54 910–54 927, 2020.
  15. S. Park, “Wind and airspeed error estimation with gps and pitot-static system for small uav,” International Journal of Aeronautical and Space Sciences, vol. 18, pp. 344–351, 06 2017.
  16. Y. Zhong, Y. Zhang, W. Zhang, J. Zuo, and H. Zhan, “Robust actuator fault detection and diagnosis for a quadrotor uav with external disturbances,” IEEE Access, vol. 6, pp. 48 169–48 180, 2018.
  17. C. Hajiyev, D. Cilden Guler, and U. Hacizade, “Two-stage kalman filter for fault tolerant estimation of wind speed and uav flight parameters,” Measurement Science Review, vol. 20, pp. 35–42, 02 2020.
  18. Z. Nejati, A. Faraji, and M. Abedi, “Robust three stage central difference kalman filter for helicopter unmanned aerial vehicle actuators fault estimation,” International Journal of Engineering, vol. 34, no. 5, pp. 1290–1296, 2021.
  19. Y. Demitrit, S. Verling, T. Stastny, A. Melzer, and R. Siegwart, “Model-based wind estimation for a hovering vtol tailsitter uav,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3945–3952.
  20. M. Simma, H. Mjøen, and T. Boström, “Measuring wind speed using the internal stabilization system of a quadrotor drone,” Drones, vol. 4, no. 2, 2020.
  21. V. k. Varigonda, B. Agrawal, and V. K. Annamalai, “Iot based automatic fault identification and alerting system for unmanned aerial vehicles,” in 2020 Fourth International Conference on Inventive Systems and Control (ICISC), 2020, pp. 20–24.
  22. P. Freeman, R. Pandita, N. Srivastava, and G. J. Balas, “Model-based and data-driven fault detection performance for a small uav,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1300–1309, 2013.
  23. P.-Y. BRULIN, F. KHENFRI, and N. RIZOUG, “Deep-learning fault detection and classification on a uav propulsion system,” in 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), 2022, pp. 1–7.
  24. B. Wang, Z. Wang, L. Liu, D. Liu, and X. Peng, “Data-driven anomaly detection for uav sensor data based on deep learning prediction model,” in 2019 Prognostics and System Health Management Conference (PHM-Paris), 2019, pp. 286–290.
  25. L. A. Zadeh, “Is there a need for fuzzy logic?” Information Sciences, vol. 178, no. 13, pp. 2751–2779, 2008.
  26. J. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings of the IEEE, vol. 83, no. 3, pp. 345–377, 1995.
  27. L.-X. Wang and J. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1414–1427, 1992.
  28. M. Setnes, R. Babuska, and H. Verbruggen, “Rule-based modeling: precision and transparency,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 28, no. 1, pp. 165–169, 1998.
  29. Q. Zhang, X. Wang, X. Xiao, and C. Pei, “Design of a fault detection and diagnose system for intelligent unmanned aerial vehicle navigation system,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, p. 095440621878050, 06 2018.
  30. E. Gendron, M.-A. Leclerc, S. Hovington, E. Perron, D. Rancourt, A. Lussier-Desbiens, P. Hamelin, and A. Girard, “Assessing wind impact on semi-autonomous drone landings for in-contact power line inspection,” 2023, submitted for publication.
  31. F. Mirallès, P. Hamelin, G. Lambert, S. Lavoie, N. Pouliot, M. Montfrond, and S. Montambault, “LineDrone technology: Landing an unmanned aerial vehicle on a power line,” in 2018 IEEE International Conference on Robotics and Automation, 2018, pp. 6545–6552.
  32. H. C. Drones. (2023) Drone thrust testing. Accessed: Sept. 58, 2023. [Online]. Available: https://www.halfchrome.com/drone-thrust-testing/
  33. A. D. Team, “Windspeed estimation and baro compensation,” Apr 2023. [Online]. Available: https://ardupilot.org/copter/docs/airspeed-estimation.html

Summary

We haven't generated a summary for this paper yet.