Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robotics meets Fluid Dynamics: A Characterization of the Induced Airflow below a Quadrotor as a Turbulent Jet (2403.13321v3)

Published 20 Mar 2024 in cs.RO

Abstract: The widespread adoption of quadrotors for diverse applications, from agriculture to public safety, necessitates an understanding of the aerodynamic disturbances they create. This paper introduces a computationally lightweight model for estimating the time-averaged magnitude of the induced flow below quadrotors in hover. Unlike related approaches that rely on expensive computational fluid dynamics (CFD) simulations or drone specific time-consuming empirical measurements, our method leverages classical theory from turbulent flows. By analyzing over 16 hours of flight data from drones of varying sizes within a large motion capture system, we show for the first time that the combined flow from all drone propellers is well-approximated by a turbulent jet after 2.5 drone-diameters below the vehicle. Using a novel normalization and scaling, we experimentally identify model parameters that describe a unified mean velocity field below differently sized quadrotors. The model, which requires only the drone's mass, propeller size, and drone size for calculations, accurately describes the far-field airflow over a long-range in a very large volume which is impractical to simulate using CFD. Our model offers a practical tool for ensuring safer operations near humans, optimizing sensor placements and drone control in multi-agent scenarios. We demonstrate the latter by designing a controller that compensates for the downwash of another drone, leading to a four times lower altitude deviation when passing below.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug 2023.
  2. R. D’Andrea, “Guest editorial: Can drones deliver?” IEEE Transactions on Automation Science and Engineering, 2014.
  3. K. Karydis and V. Kumar, “Energetics in robotic flight at small scales,” Interface Focus, 2017.
  4. K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar, “Fast, autonomous flight in gps-denied and cluttered environments,” Journal of Field Robotics, 2018.
  5. “DJI Camera Drones,” https://www.dji.com/camera-drones, accessed: 2024-02-25.
  6. “Flyability Elios-3,” https://www.flyability.com/elios-3, accessed: 2024-02-25.
  7. “Skydio X10 Drone,” https://www.skydio.com/x10, accessed: 2024-02-25.
  8. “Parrot Drones,” https://www.parrot.com/us, accessed: 2024-02-25.
  9. C. E. Comission, “Aerialcore,” https://aerial-core.eu/, accessed: 2024-03-13.
  10. ——, “Autoassess,” https://autoassess.eu/, accessed: 2024-03-13.
  11. K. Chang, S. Chen, M. Wang, X. Xue, and Y. Lan, “Numerical simulation and verification of rotor downwash flow field of plant protection uav at different rotor speeds,” Frontiers in Plant Science, vol. 13, 2023.
  12. N. Simon, A. Z. Ren, A. Piqué, D. Snyder, D. Barretto, M. Hultmark, and A. Majumdar, “Flowdrone: Wind estimation and gust rejection on uavs using fast-response hot-wire flow sensors,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, May 2023.
  13. T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez, “Development and validation of a uav based system for air pollution measurements,” Sensors, vol. 16, no. 12, 2016.
  14. C. Crazzolara, M. Ebner, A. Platis, T. Miranda, J. Bange, and A. Junginger, “A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer,” Atmospheric Measurement Techniques, vol. 12, no. 3, pp. 1581–1598, 2019.
  15. K. A. McKinney, D. Wang, J. Ye, J.-B. de Fouchier, P. C. Guimarães, C. E. Batista, R. A. F. Souza, E. G. Alves, D. Gu, A. B. Guenther, and S. T. Martin, “A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles,” Atmospheric Measurement Techniques, vol. 12, no. 6, pp. 3123–3135, June 2019.
  16. W. Thielicke, W. Hübert, U. Müller, M. Eggert, and P. Wilhelm, “Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer,” Atmospheric Measurement Techniques, vol. 14, no. 2, pp. 1303–1318, 2021.
  17. M. Ghirardelli, S. T. Kral, N. C. Müller, R. Hann, E. Cheynet, and J. Reuder, “Flow structure around a multicopter drone: A computational fluid dynamics analysis for sensor placement considerations,” Drones, vol. 7, no. 7, 2023.
  18. C. Paz, E. Suárez, C. Gil, and J. Vence, “Assessment of the methodology for the cfd simulation of the flight of a quadcopter uav,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 218, p. 104776, 2021.
  19. P. Ventura Diaz and S. Yoon, “High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles,” in 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1266.
  20. J. Luo, L. Zhu, and G. Yan, “Novel quadrotor forward-flight model based on wake interference,” Aiaa Journal, vol. 53, no. 12, pp. 3522–3533, 2015.
  21. M. Kühn, K. Ehrenfried, J. Bosbach, and C. Wagner, “Large-scale tomographic particle image velocimetry using helium-filled soap bubbles,” Experiments in Fluids, vol. 50, no. 4, pp. 929–948, August 2010.
  22. C. Jux, A. Sciacchitano, J. F. G. Schneiders, and F. Scarano, “Robotic volumetric piv of a full-scale cyclist,” Experiments in Fluids, vol. 59, no. 4, p. 74, Apr 2018.
  23. R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robotics and Automation magazine, vol. 19, no. 3, pp. 20–32, 2012.
  24. F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular gazebo mav simulator framework,” in Robot Operating System (ROS).   Springer, 2016, pp. 595–625.
  25. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,” in Field and service robotics.   Springer, 2018, pp. 621–635.
  26. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza, “Neurobem: Hybrid aerodynamic quadrotor model,” RSS: Robotics, Science, and Systems, 2021.
  27. W. Khan and M. Nahon, “Toward an accurate physics-based uav thruster model,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1269–1279, 2013.
  28. R. Gill and R. D’Andrea, “Propeller thrust and drag in forward flight,” in 2017 IEEE Conference on Control Technology and Applications (CCTA).   IEEE, 2017, pp. 73–79.
  29. R. Gill and R. D’Andrea, “Computationally efficient force and moment models for propellers in uav forward flight applications,” Drones, vol. 3, no. 4, p. 77, 2019.
  30. G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor helicopter flight dynamics and control: Theory and experiment,” in AIAA guidance, navigation and control conference and exhibit, 2007, p. 6461.
  31. H. Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering,” in 2009 IEEE international conference on robotics and automation.   IEEE, 2009, pp. 3277–3282.
  32. D. Ragni, B. Van Oudheusden, and F. Scarano, “Non-intrusive aerodynamic loads analysis of an aircraft propeller blade,” Experiments in fluids, vol. 51, no. 2, pp. 361–371, 2011.
  33. W. Westmoreland, R. Tramel, and J. Barber, “Modeling propeller flow-fields using cfd,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, p. 402.
  34. Y. ZHENG, S. YANG, X. LIU, J. WANG, T. NORTON, J. CHEN, and Y. TAN, “The computational fluid dynamic modeling of downwash flow field for a six-rotor uav,” Frontiers of Agricultural Science and Engineering, vol. 5, no. 2, p. 159, 2018.
  35. H. Yasuda, K. Kitamura, and Y. Nakamura, “Numerical analysis of flow field and aerodynamic characteristics of a quadrotor,” Transactions of The Japan Society for Aeronautical and Space Sciences, Space Technology Japan, vol. 11, pp. 61–70, 2013.
  36. S. Yoon, Nasa, P. V. Diaz, D. D. J. Boyd, W. M. Chan, and C. R. Theodore, “Computational aerodynamic modeling of small quadcopter vehicles,” 2017.
  37. F. Pätzold, A. Bauknecht, A. Schlerf, D. Sotomayor Zakharov, L. Bretschneider, and A. Lampert, “Flight experiments and numerical simulations for investigating multicopter flow field and structure deformation,” Atmosphere, vol. 14, no. 9, 2023.
  38. X. Liu, T. Guo, P. Zhang, Z. Jia, and X. Tong, “Extraction of a weak flow field for a multi-rotor unmanned aerial vehicle (uav) using high-speed background-oriented schlieren (bos) technology,” Sensors, vol. 22, no. 1, 2022.
  39. H. Otsuka, M. Kohno, and K. Nagatani, “Flow visualization of wake of a quad-copter in ground effect,” in 6th Asian-Australian Rotorcraft Forum and Heli Japan 2017, ARF 2017, 2017.
  40. D. Shukla and N. Komerath, “Multirotor drone aerodynamic interaction investigation,” Drones, vol. 2, no. 4, 2018.
  41. Z. Czyż, P. Karpiński, and W. Stryczniewicz, “Measurement of the flow field generated by multicopter propellers,” Sensors, vol. 20, no. 19, 2020.
  42. G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor helicopter flight dynamics and control: Theory and experiment,” in AIAA guidance, navigation and control conf., 2007.
  43. P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld, T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight,” Science Robotics, vol. 7, no. 67, 2022.

Summary

We haven't generated a summary for this paper yet.