Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Prospects for Light Dark Matter Searches at Large-Volume Neutrino Detectors (2402.04184v2)

Published 6 Feb 2024 in hep-ph

Abstract: We propose a new approach to search for light dark matter (DM), with keV-GeV mass, via inelastic nucleus scattering at large-volume neutrino detectors such as Borexino, DUNE, Super-K, Hyper-K, and JUNO. The approach uses inelastic nuclear scattering of cosmic-ray boosted DM, enabling a low background search for DM in these experiments. Large neutrino detectors, with higher thresholds than dark matter detectors, can be used, since the nuclear deexcitation lines are O(10) MeV. Using a hadrophilic dark-gauge-boson-portal model as a benchmark, we show that the nuclear inelastic channels generally provide better sensitivity than the elastic scattering for a large region of light DM parameter space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G 46, 103003 (2019), arXiv:1903.03026 [astro-ph.CO] .
  2. J. Cooley et al., Report of the Topical Group on Particle Dark Matter for Snowmass 2021,   (2022), arXiv:2209.07426 [hep-ph] .
  3. B. Batell et al., Dark Sector Studies with Neutrino Beams, in Snowmass 2021 (2022) arXiv:2207.06898 [hep-ph] .
  4. B. Dutta, W.-C. Huang, and J. L. Newstead, Probing the Dark Sector with Nuclear Transition Photons, Phys. Rev. Lett. 131, 111801 (2023), arXiv:2302.10250 [hep-ph] .
  5. F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06, 109, arXiv:1003.5912 [hep-ph] .
  6. G. Belanger and J.-C. Park, Assisted freeze-out, JCAP 03, 038, arXiv:1112.4491 [hep-ph] .
  7. K. Kong, G. Mohlabeng, and J.-C. Park, Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743, 256 (2015), arXiv:1411.6632 [hep-ph] .
  8. D. Kim, J.-C. Park, and S. Shin, Dark Matter “Collider” from Inelastic Boosted Dark Matter, Phys. Rev. Lett. 119, 161801 (2017), arXiv:1612.06867 [hep-ph] .
  9. T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122, 171801 (2019), arXiv:1810.10543 [hep-ph] .
  10. Y. Ema, F. Sala, and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122, 181802 (2019), arXiv:1811.00520 [hep-ph] .
  11. A. Guha and J.-C. Park, Constraints on cosmic-ray boosted dark matter with realistic cross section,  (2024), arXiv:2401.07750 [hep-ph] .
  12. B. Dutta, S. Ghosh, and J. Kumar, A sub-GeV dark matter model, Phys. Rev. D 100, 075028 (2019), arXiv:1905.02692 [hep-ph] .
  13. Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94, 053010 (2016), arXiv:1607.07616 [hep-ph] .
  14. P. deNiverville, M. Pospelov, and A. Ritz, Light new physics in coherent neutrino-nucleus scattering experiments, Phys. Rev. D 92, 095005 (2015), arXiv:1505.07805 [hep-ph] .
  15. C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, Reverse Direct Detection: Cosmic Ray Scattering With Light Dark Matter, Phys. Rev. D 99, 063004 (2019), arXiv:1810.07705 [hep-ph] .
  16. N. F. Bell, J. L. Newstead, and I. Shaukat-Ali, Cosmic-ray dark matter confronted by constraints on new light mediators,   (2023), arXiv:2309.11003 [hep-ph] .
  17. J. A. Dror, R. Lasenby, and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119, 141803 (2017), arXiv:1705.06726 [hep-ph] .
  18. M. Escudero, Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neffsubscript𝑁effN_{\rm eff}italic_N start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT evaluation, JCAP 02, 007, arXiv:1812.05605 [hep-ph] .
  19. C. W. Johnson, W. E. Ormand, and P. G. Krastev, Factorization in large-scale many-body calculations, Comput. Phys. Commun. 184, 2761 (2013), arXiv:1303.0905 [nucl-th] .
  20. F. Nowacki and A. Poves, New effective interaction for 0⁢ℏ⁢ω0Planck-constant-over-2-pi𝜔0\mathit{\hbar}\omega0 roman_ℏ italic_ω shell-model calculations in the 𝑠𝑑−𝑝𝑓𝑠𝑑𝑝𝑓\mathit{sd}\text{$-$}\mathit{pf}italic_sd - italic_pf valence space, Phys. Rev. C 79, 014310 (2009).
  21. D. Tilley, H. Weller, and C. Cheves, Energy levels of light nuclei a = 16–17, Nuclear Physics A 564, 1 (1993).
  22. R. Maschuw (KARMEN), Neutrino spectroscopy with KARMEN, Prog. Part. Nucl. Phys. 40, 183 (1998).
  23. A. M. Suliga and J. F. Beacom, Distinctive nuclear signatures of low-energy atmospheric neutrinos, Phys. Rev. D 108, 043035 (2023).
  24. M. J. Dolan, F. Kahlhoefer, and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121, 101801 (2018), arXiv:1711.09906 [hep-ph] .
  25. Y. Ema, F. Sala, and R. Sato, Neutrino experiments probe hadrophilic light dark matter, SciPost Phys. 10, 072 (2021), arXiv:2011.01939 [hep-ph] .
  26. G. Alimonti et al. (Borexino), The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600, 568 (2009), arXiv:0806.2400 [physics.ins-det] .
  27. G. Alimonti et al. (Borexino), Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos, Astropart. Phys. 16, 205 (2002), arXiv:hep-ex/0012030 .
  28. Juno physics and detector, Progress in Particle and Nuclear Physics 123, 103927 (2022).
  29. F. An et al. (JUNO), Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016), arXiv:1507.05613 [physics.ins-det] .
  30. Z. Djurcic et al. (JUNO), JUNO Conceptual Design Report,   (2015), arXiv:1508.07166 [physics.ins-det] .
  31. K. Abe et al. (Hyper-Kamiokande Working Group), A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande (2014) arXiv:1412.4673 [physics.ins-det] .
  32. Y. Kudenko, Hyper-kamiokande, Journal of Instrumentation 15 (07), C07029.
  33. F. D. Lodovico and on behalf of the Hyper Kamiokande Collaboration, The hyper-kamiokande experiment, Journal of Physics: Conference Series 888, 012020 (2017).
  34. R. Acciarri et al. (DUNE), Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF,   (2015), arXiv:1512.06148 [physics.ins-det] .
  35. J. Aalbers et al. (LZ), First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
  36. C. E. Aalseth et al. (DarkSide-20k), DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133, 131 (2018), arXiv:1707.08145 [physics.ins-det] .
  37. B. Chauhan, B. Dasgupta, and A. Dighe, Large-energy single hits at JUNO from atmospheric neutrinos and dark matter, Phys. Rev. D 105, 095035 (2022), arXiv:2111.14586 [hep-ph] .
  38. G. Bellini et al. (Borexino), New limits on heavy sterile neutrino mixing in B8 decay obtained with the Borexino detector, Phys. Rev. D 88, 072010 (2013), arXiv:1311.5347 [hep-ex] .
  39. Y. Suzuki, Solar neutrinos, International Journal of Modern Physics A 15, 201 (2000).
  40. G. B. Gelmini, V. Takhistov, and S. J. Witte, Geoneutrinos in large direct detection experiments, Phys. Rev. D 99, 093009 (2019).
  41. E. Vitagliano, I. Tamborra, and G. Raffelt, Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components, Rev. Mod. Phys. 92, 45006 (2020), arXiv:1910.11878 [astro-ph.HE] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com