Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

SynthVision -- Harnessing Minimal Input for Maximal Output in Computer Vision Models using Synthetic Image data (2402.02826v1)

Published 5 Feb 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Rapid development of disease detection computer vision models is vital in response to urgent medical crises like epidemics or events of bioterrorism. However, traditional data gathering methods are too slow for these scenarios necessitating innovative approaches to generate reliable models quickly from minimal data. We demonstrate our new approach by building a comprehensive computer vision model for detecting Human Papilloma Virus Genital warts using only synthetic data. In our study, we employed a two phase experimental design using diffusion models. In the first phase diffusion models were utilized to generate a large number of diverse synthetic images from 10 HPV guide images explicitly focusing on accurately depicting genital warts. The second phase involved the training and testing vision model using this synthetic dataset. This method aimed to assess the effectiveness of diffusion models in rapidly generating high quality training data and the subsequent impact on the vision model performance in medical image recognition. The study findings revealed significant insights into the performance of the vision model trained on synthetic images generated through diffusion models. The vision model showed exceptional performance in accurately identifying cases of genital warts. It achieved an accuracy rate of 96% underscoring its effectiveness in medical image classification. For HPV cases the model demonstrated a high precision of 99% and a recall of 94%. In normal cases the precision was 95% with an impressive recall of 99%. These metrics indicate the model capability to correctly identify true positive cases and minimize false positives. The model achieved an F1 Score of 96% for HPV cases and 97% for normal cases. The high F1 Score across both categories highlights the balanced nature of the model precision and recall ensuring reliability and robustness in its predictions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube