The flavor composition of ultra-high-energy cosmic neutrinos: measurement forecasts for in-ice radio-based EeV neutrino telescopes (2402.02432v2)
Abstract: In-ice radio-detection is a promising technique to discover and characterize ultra-high-energy (UHE) neutrinos, with energies above 100 PeV, adopted by present - ARA, ARIANNA, and RNO-G - and planned - IceCube-Gen2. So far, their ability to measure neutrino flavor has remained unexplored. We show and quantify how the neutrino flavor can be measured with in-ice radio detectors using two complementary detection channels. The first channel, sensitive to $\nu_e$, identifies them via their charged-current interactions, whose radio emission is elongated in time due to the Landau-Pomeranchuk-Migdal effect. The second channel, sensitive to $\nu_\mu$ and $\nu_\tau$, identifies events made up of multiple showers generated by the muons and taus they generate. We show this in state-of-the-art forecasts geared at IceCube-Gen2, for representative choices of the UHE neutrino flux. This newfound sensitivity could allow us to infer the UHE neutrino flavor composition at their sources - and thus the neutrino production mechanism - and to probe UHE neutrino physics.
- V. S. Berezinsky and G. T. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett. B 28, 423 (1969).
- K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16, 748 (1966).
- G. T. Zatsepin and V. A. Kuzmin, Upper limit of the spectrum of cosmic rays, JETP Lett. 4, 78 (1966).
- M. G. Aartsen et al. (IceCube), Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, Phys. Rev. D 98, 062003 (2018), arXiv:1807.01820 [astro-ph.HE] .
- A. Aab et al. (Pierre Auger), Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory, JCAP 10, 022, arXiv:1906.07422 [astro-ph.HE] .
- R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49, 110501 (2022), arXiv:2203.05591 [hep-ph] .
- M. Ackermann et al., High-energy and ultra-high-energy neutrinos: A Snowmass white paper, JHEAp 36, 55 (2022), arXiv:2203.08096 [hep-ph] .
- C. Guépin, K. Kotera, and F. Oikonomou, High-energy neutrino transients and the future of multi-messenger astronomy, Nature Rev. Phys. 4, 697 (2022), arXiv:2207.12205 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube-Gen2), IceCube-Gen2: the window to the extreme Universe, J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE] .
- R. Abbasi et al. (IceCube-Gen2), Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos, PoS ICRC2023, 1123 (2023), arXiv:2308.15220 [astro-ph.HE] .
- M. Bustamante, J. F. Beacom, and W. Winter, Theoretically palatable flavor combinations of astrophysical neutrinos, Phys. Rev. Lett. 115, 161302 (2015), arXiv:1506.02645 [astro-ph.HE] .
- J. P. Rachen and P. Mészáros, Photohadronic neutrinos from transients in astrophysical sources, Phys. Rev. D 58, 123005 (1998), arXiv:astro-ph/9802280 .
- H. Athar, M. Jezabek, and O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux, Phys. Rev. D 62, 103007 (2000), arXiv:hep-ph/0005104 .
- R. M. Crocker, F. Melia, and R. R. Volkas, Searching for long wavelength neutrino oscillations in the distorted neutrino spectrum of galactic supernova remnants, Astrophys. J. Suppl. 141, 147 (2002), arXiv:astro-ph/0106090 .
- G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67, 073024 (2003), arXiv:hep-ph/0301220 .
- J. F. Beacom and J. Candia, Shower power: Isolating the prompt atmospheric neutrino flux using electron neutrinos, JCAP 11, 009, arXiv:hep-ph/0409046 .
- T. Kashti and E. Waxman, Flavoring astrophysical neutrinos: Flavor ratios depend on energy, Phys. Rev. Lett. 95, 181101 (2005), arXiv:astro-ph/0507599 .
- O. Mena, I. Mocioiu, and S. Razzaque, Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources, Phys. Rev. D 75, 063003 (2007), arXiv:astro-ph/0612325 .
- M. Kachelrieß and R. Tomàs, High energy neutrino yields from astrophysical sources I: Weakly magnetized sources, Phys. Rev. D 74, 063009 (2006), arXiv:astro-ph/0606406 .
- P. Lipari, M. Lusignoli, and D. Meloni, Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, Phys. Rev. D 75, 123005 (2007), arXiv:0704.0718 [astro-ph] .
- A. Esmaili and Y. Farzan, An Analysis of Cosmic Neutrinos: Flavor Composition at Source and Neutrino Mixing Parameters, Nucl. Phys. B 821, 197 (2009), arXiv:0905.0259 [hep-ph] .
- S. Choubey and W. Rodejohann, Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes, Phys. Rev. D 80, 113006 (2009), arXiv:0909.1219 [hep-ph] .
- W. Winter, Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube, Phys. Rev. D 88, 083007 (2013), arXiv:1307.2793 [astro-ph.HE] .
- M. Bustamante and M. Ahlers, Inferring the flavor of high-energy astrophysical neutrinos at their sources, Phys. Rev. Lett. 122, 241101 (2019), arXiv:1901.10087 [astro-ph.HE] .
- M. Ackermann et al., Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51, 185 (2019a), arXiv:1903.04334 [astro-ph.HE] .
- M. Bustamante and I. Tamborra, Using high-energy neutrinos as cosmic magnetometers, Phys. Rev. D 102, 123008 (2020), arXiv:2009.01306 [astro-ph.HE] .
- B. Telalovic and M. Bustamante, Flavor Anisotropy in the High-Energy Astrophysical Neutrino Sky, (2023), arXiv:2310.15224 [astro-ph.HE] .
- P. D. Serpico, Probing the 2-3 leptonic mixing at high-energy neutrino telescopes, Phys. Rev. D 73, 047301 (2006), arXiv:hep-ph/0511313 .
- S. Pakvasa, W. Rodejohann, and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, JHEP 02, 005, arXiv:0711.4517 [hep-ph] .
- A. Esmaili, Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Phys. Rev. D 81, 013006 (2010), arXiv:0909.5410 [hep-ph] .
- M. Bustamante, A. M. Gago, and C. Peña-Garay, Energy-Independent New Physics in the Flavour Ratios of High-Energy Astrophysical Neutrinos, JHEP 04, 066, arXiv:1001.4878 [hep-ph] .
- P. Mehta and W. Winter, Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects, JCAP 03, 041, arXiv:1101.2673 [hep-ph] .
- P. Baerwald, M. Bustamante, and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10, 020, arXiv:1208.4600 [astro-ph.CO] .
- L. Fu, C. M. Ho, and T. J. Weiler, Cosmic Neutrino Flavor Ratios with Broken νμ−ντsubscript𝜈𝜇subscript𝜈𝜏\nu_{\mu}-\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Symmetry, Phys. Lett. B 718, 558 (2012), arXiv:1209.5382 [hep-ph] .
- S. Pakvasa, A. Joshipura, and S. Mohanty, Explanation for the low flux of high energy astrophysical muon-neutrinos, Phys. Rev. Lett. 110, 171802 (2013), arXiv:1209.5630 [hep-ph] .
- X.-J. Xu, H.-J. He, and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, JCAP 12, 039, arXiv:1407.3736 [hep-ph] .
- C. A. Argüelles, T. Katori, and J. Salvadó, New Physics in Astrophysical Neutrino Flavor, Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 [hep-ph] .
- I. M. Shoemaker and K. Murase, Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Phys. Rev. D 93, 085004 (2016), arXiv:1512.07228 [astro-ph.HE] .
- P. F. de Salas, R. A. Lineros, and M. Tórtola, Neutrino propagation in the galactic dark matter halo, Phys. Rev. D 94, 123001 (2016), arXiv:1601.05798 [astro-ph.HE] .
- M. Bustamante, J. F. Beacom, and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95, 063013 (2017), arXiv:1610.02096 [astro-ph.HE] .
- M. Bustamante and S. K. Agarwalla, Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos, Phys. Rev. Lett. 122, 061103 (2019), arXiv:1808.02042 [astro-ph.HE] .
- Y. Farzan and S. Palomares-Ruiz, Flavor of cosmic neutrinos preserved by ultralight dark matter, Phys. Rev. D 99, 051702 (2019), arXiv:1810.00892 [hep-ph] .
- M. Ahlers, M. Bustamante, and S. Mu, Unitarity Bounds of Astrophysical Neutrinos, Phys. Rev. D 98, 123023 (2018), arXiv:1810.00893 [astro-ph.HE] .
- V. Brdar and R. S. L. Hansen, IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability, JCAP 02, 023, arXiv:1812.05541 [hep-ph] .
- A. Palladino, The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?, Eur. Phys. J. C 79, 500 (2019), arXiv:1902.08630 [astro-ph.HE] .
- M. Ackermann et al., Fundamental Physics with High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51, 215 (2019b), arXiv:1903.04333 [astro-ph.HE] .
- M. Ahlers, M. Bustamante, and N. G. N. Willesen, Flavors of astrophysical neutrinos with active-sterile mixing, JCAP 07, 029, arXiv:2009.01253 [hep-ph] .
- S. Karmakar, S. Pandey, and S. Rakshit, Astronomy with energy dependent flavour ratios of extragalactic neutrinos, JHEP 10, 004, arXiv:2010.07336 [hep-ph] .
- C. A. Argüelles et al., Snowmass white paper: beyond the standard model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021), Eur. Phys. J. C 83, 15 (2023), arXiv:2203.10811 [hep-ph] .
- O. Mena, S. Palomares-Ruiz, and A. C. Vincent, Flavor Composition of the High-Energy Neutrino Events in IceCube, Phys. Rev. Lett. 113, 091103 (2014), arXiv:1404.0017 [astro-ph.HE] .
- S. Palomares-Ruiz, A. C. Vincent, and O. Mena, Spectral analysis of the high-energy IceCube neutrinos, Phys. Rev. D 91, 103008 (2015), arXiv:1502.02649 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, Phys. Rev. Lett. 114, 171102 (2015a), arXiv:1502.03376 [astro-ph.HE] .
- A. Palladino and F. Vissani, The natural parameterization of cosmic neutrino oscillations, Eur. Phys. J. C 75, 433 (2015), arXiv:1504.05238 [hep-ph] .
- M. G. Aartsen et al. (IceCube), A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, Astrophys. J. 809, 98 (2015b), arXiv:1507.03991 [astro-ph.HE] .
- A. C. Vincent, S. Palomares-Ruiz, and O. Mena, Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D 94, 023009 (2016), arXiv:1605.01556 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Detection of astrophysical tau neutrino candidates in IceCube, Eur. Phys. J. C 82, 1031 (2022a), arXiv:2011.03561 [hep-ex] .
- G. A. Askar’yan, Excess negative charge of an electron-photon shower and its coherent radio emission, Zh. Eksp. Teor. Fiz. 41, 616 (1961).
- I. Kravchenko et al. (RICE), Performance and simulation of the RICE detector, Astropart. Phys. 19, 15 (2003), arXiv:astro-ph/0112372 .
- A. Anker et al., A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data, JCAP 03, 053, arXiv:1909.00840 [astro-ph.IM] .
- P. Allison et al. (ARA), Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations, Phys. Rev. D 102, 043021 (2020), arXiv:1912.00987 [astro-ph.HE] .
- A. Anker et al. (ARIANNA), Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole, JINST 15 (09), P09039, arXiv:2006.03027 [astro-ph.IM] .
- A. Anker et al. (ARIANNA), Measuring the polarization reconstruction resolution of the ARIANNA neutrino detector with cosmic rays, JCAP 04 (04), 022, arXiv:2112.01501 [astro-ph.HE] .
- P. Allison et al. (ARA), Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array, Phys. Rev. D 105, 122006 (2022), arXiv:2202.07080 [astro-ph.HE] .
- J. A. Aguilar et al. (RNO-G), Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G), JINST 16 (03), P03025, [Erratum: JINST 18, E03001 (2023)], arXiv:2010.12279 [astro-ph.IM] .
- IceCube-Gen2 Technical Design Report, https://icecube-gen2.wisc.edu/science/publications/TDR.
- V. B. Valera, M. Bustamante, and C. Glaser, The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery, JHEP 06, 105, arXiv:2204.04237 [hep-ph] .
- D. F. G. Fiorillo, M. Bustamante, and V. B. Valera, Near-future discovery of point sources of ultra-high-energy neutrinos, JCAP 03, 026, arXiv:2205.15985 [astro-ph.HE] .
- V. B. Valera, M. Bustamante, and C. Glaser, Near-future discovery of the diffuse flux of ultrahigh-energy cosmic neutrinos, Phys. Rev. D 107, 043019 (2023a), arXiv:2210.03756 [astro-ph.HE] .
- V. B. Valera, M. Bustamante, and O. Mena, Joint measurement of the ultra-high-energy neutrino spectrum and cross section, (2023b), arXiv:2308.07709 [astro-ph.HE] .
- L. A. Anchordoqui, Ultra-High-Energy Cosmic Rays, Phys. Rept. 801, 1 (2019), arXiv:1807.09645 [astro-ph.HE] .
- R. Alves Batista et al., Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Front. Astron. Space Sci. 6, 23 (2019), arXiv:1903.06714 [astro-ph.HE] .
- I. Esteban, S. Prohira, and J. F. Beacom, Detector requirements for model-independent measurements of ultrahigh energy neutrino cross sections, Phys. Rev. D 106, 023021 (2022a), arXiv:2205.09763 [hep-ph] .
- C. Glaser et al., NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector, Eur. Phys. J. C 80, 77 (2020), arXiv:1906.01670 [astro-ph.IM] .
- D. García-Fernández, A. Nelles, and C. Glaser, Signatures of secondary leptons in radio-neutrino detectors in ice, Phys. Rev. D 102, 083011 (2020), arXiv:2003.13442 [astro-ph.HE] .
- C. Glaser, D. García-Fernández, and A. Nelles, Prospects for neutrino-flavor physics with in-ice radio detectors, PoS ICRC2021, 1231 (2021).
- O. Ericsson, Investigations into neutrino flavor reconstruction from radio detector data using convolutional neural networks, Bachelor’s thesis, Uppsala University (2021).
- S. Stjärnholm, O. Ericsson, and C. Glaser, Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks, PoS ICRC2021, 1055 (2021).
- R. Brock et al. (CTEQ), Handbook of perturbative QCD: Version 1.0, Rev. Mod. Phys. 67, 157 (1995).
- J. M. Conrad, M. H. Shaevitz, and T. Bolton, Precision measurements with high-energy neutrino beams, Rev. Mod. Phys. 70, 1341 (1998), arXiv:hep-ex/9707015 .
- J. A. Formaggio and G. P. Zeller, From eV to EeV: Neutrino Cross Sections Across Energy Scales, Rev. Mod. Phys. 84, 1307 (2012), arXiv:1305.7513 [hep-ex] .
- M. G. Aartsen et al. (IceCube), Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption, Nature 551, 596 (2017), arXiv:1711.08119 [hep-ex] .
- M. Bustamante and A. Connolly, Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers, Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube, Phys. Rev. D 99, 032004 (2019), arXiv:1808.07629 [hep-ex] .
- R. Abbasi et al. (IceCube), Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube, Phys. Rev. D 104, 022001 (2021a), arXiv:2011.03560 [hep-ex] .
- S. Barwick et al. (ARIANNA), Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy, PoS ICRC2021, 1151 (2021).
- J. A. Aguilar et al., Reconstructing the neutrino energy for in-ice radio detectors: A study for the Radio Neutrino Observatory Greenland (RNO-G), Eur. Phys. J. C 82, 147 (2022), arXiv:2107.02604 [astro-ph.HE] .
- I. Plaisier, S. Bouma, and A. Nelles, Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors, Eur. Phys. J. C 83, 443 (2023), arXiv:2302.00054 [astro-ph.HE] .
- S. Bouma et al. (IceCube-Gen2), Direction reconstruction performance for IceCube-Gen2 Radio, PoS ICRC2023, 1045 (2023).
- N. Heyer et al. (IceCube-Gen2), Deep Learning Based Event Reconstruction for the IceCube-Gen2 Radio Detector, PoS ICRC2023, 1102 (2023), arXiv:2308.00164 [astro-ph.HE] .
- L. D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953).
- L. D. Landau and I. Pomeranchuk, Electron-Cascade Processes at Ultra-High Energies, Dokl. Akad. Nauk SSSR 92, 10.1016/b978-0-08-010586-4.50081-x (1965).
- A. B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103, 1811 (1956).
- L. Gerhardt and S. R. Klein, Electron and Photon Interactions in the Regime of Strong LPM Suppression, Phys. Rev. D 82, 074017 (2010), arXiv:1007.0039 [hep-ph] .
- S. R. Klein, S. A. Robertson, and R. Vogt, Nuclear effects in high-energy neutrino interactions, Phys. Rev. C 102, 015808 (2020), arXiv:2001.03677 [hep-ph] .
- J. Álvarez-Muñiz, A. Romero-Wolf, and E. Zas, Practical and accurate calculations of Askaryan radiation, Phys. Rev. D 84, 103003 (2011), arXiv:1106.6283 [astro-ph.HE] .
- R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- S. Ritz and D. Seckel, Detailed Neutrino Spectra From Cold Dark Matter Annihilations in the Sun, Nucl. Phys. B 304, 877 (1988).
- F. Halzen and D. Saltzberg, Tau-neutrino appearance with a 1000 Megaparsec baseline, Phys. Rev. Lett. 81, 4305 (1998), arXiv:hep-ph/9804354 .
- V. B. Valera and M. Bustamante, (2023), private communication.
- R. Abbasi et al. (IceCube), IceCube Search for Earth-traversing ultra-high energy Neutrinos, PoS ICRC2021, 1170 (2021b).
- F. Testagrossa, D. F. G. Fiorillo, and M. Bustamante, Two-detector flavor sensitivity to ultra-high-energy cosmic neutrinos, (2023), arXiv:2310.12215 [astro-ph.HE] .
- D. Bergman (Telescope Array), Telescope Array Combined Fit to Cosmic Ray Spectrum and Composition, PoS ICRC2021, 338 (2021).
- A. van Vliet, R. Alves Batista, and J. R. Hörandel, Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos, Phys. Rev. D 100, 021302 (2019), arXiv:1901.01899 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data, Astrophys. J. 928, 50 (2022b), arXiv:2111.10299 [astro-ph.HE] .
- K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, (2014), arXiv:1409.1556 [cs.CV] .
- A. Anker et al. (ARIANNA), Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning, JINST 17 (03), P03007, arXiv:2112.01031 [astro-ph.IM] .
- A. Coleman et al. (RNO-G), Enhancing the Sensitivity of RNO-G Using a Machine-learning Based Trigger, PoS ICRC2023, 1100 (2023).
- K. Fang and K. Murase, Linking High-Energy Cosmic Particles by Black Hole Jets Embedded in Large-Scale Structures, Nature Phys. 14, 396 (2018), arXiv:1704.00015 [astro-ph.HE] .
- M. S. Muzio, M. Unger, and G. R. Farrar, Progress towards characterizing ultrahigh energy cosmic ray sources, Phys. Rev. D 100, 103008 (2019), arXiv:1906.06233 [astro-ph.HE] .
- M. S. Muzio, G. R. Farrar, and M. Unger, Probing the environments surrounding ultrahigh energy cosmic ray accelerators and their implications for astrophysical neutrinos, Phys. Rev. D 105, 023022 (2022), arXiv:2108.05512 [astro-ph.HE] .