Sample-Efficient "Clustering and Conquer" Procedures for Parallel Large-Scale Ranking and Selection (2402.02196v4)
Abstract: This work seeks to break the sample efficiency bottleneck in parallel large-scale ranking and selection (R&S) problems by leveraging correlation information. We modify the commonly used "divide and conquer" framework in parallel computing by adding a correlation-based clustering step, transforming it into "clustering and conquer". This seemingly simple modification achieves the optimal sample complexity reduction for a widely used class of efficient large-scale R&S procedures. Our approach enjoys two key advantages: 1) it does not require highly accurate correlation estimation or precise clustering, and 2) it allows for seamless integration with various existing R&S procedures, while achieving optimal sample complexity. Theoretically, we develop a novel gradient analysis framework to analyze sample efficiency and guide the design of large-scale R&S procedures. We also introduce a new parallel clustering algorithm tailored for large-scale scenarios. Finally, in large-scale AI applications such as neural architecture search, our methods demonstrate superior performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.