Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Speech foundation models in healthcare: Effect of layer selection on pathological speech feature prediction (2402.01796v2)

Published 2 Feb 2024 in eess.AS, cs.CL, and cs.LG

Abstract: Accurately extracting clinical information from speech is critical to the diagnosis and treatment of many neurological conditions. As such, there is interest in leveraging AI for automatic, objective assessments of clinical speech to facilitate diagnosis and treatment of speech disorders. We explore transfer learning using foundation models, focusing on the impact of layer selection for the downstream task of predicting pathological speech features. We find that selecting an optimal layer can greatly improve performance (~15.8% increase in balanced accuracy per feature as compared to worst layer, ~13.6% increase as compared to final layer), though the best layer varies by predicted feature and does not always generalize well to unseen data. A learned weighted sum offers comparable performance to the average best layer in-distribution (only ~1.2% lower) and had strong generalization for out-of-distribution data (only 1.5% lower than the average best layer).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com