Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kirby belts, categorified projectors, and the skein lasagna module of $S^{2}\times{S^{2}}$ (2402.01081v3)

Published 2 Feb 2024 in math.GT and math.QA

Abstract: We interpret Manolescu-Neithalath's cabled Khovanov homology formula for computing Morrison-Walker-Wedrich's $\mathrm{KhR}_2$ skein lasagna module as a homotopy colimit (mapping telescope) in a completion of the category of complexes over Bar-Natan's cobordism category. Using categorified projectors, we compute the $\mathrm{KhR}_2$ skein lasagna modules of (manifold, boundary link) pairs $(S2 \times B2, \tilde \beta)$, where $\tilde \beta$ is a geometrically essential boundary link, identifying a relationship between the lasagna module and the Rozansky projector appearing in the Rozansky-Willis invariant for nullhomologous links in $S2 \times S1$. As an application, we show that the $\mathrm{KhR}_2$ skein lasagna module of $S2 \times S2$ is trivial, confirming a conjecture of Manolescu.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. On the functoriality of 𝔰⁢𝔩2𝔰subscript𝔩2\mathfrak{sl}_{2}fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT tangle homology. Algebr. Geom. Topol., 23(3):1303–1361, 2023.
  2. Christian Blanchet. An oriented model for Khovanov homology. J. Knot Theory Ramifications, 19(2):291–312, 2010.
  3. Dror Bar-Natan. On Khovanov’s categorification of the Jones polynomial. Algebr. Geom. Topol., 2:337–370, 2002.
  4. Dror Bar-Natan. Khovanov’s homology for tangles and cobordisms. Geom. Topol., 9:1443–1499, 2005.
  5. Dror Bar-Natan. Fast Khovanov homology computations. J. Knot Theory Ramifications, 16(3):243–255, 2007.
  6. Carmen Livia Caprau. sl⁢(2)sl2\rm sl(2)roman_sl ( 2 ) tangle homology with a parameter and singular cobordisms. Algebr. Geom. Topol., 8(2):729–756, 2008.
  7. An exceptional collection for Khovanov homology. Algebr. Geom. Topol., 15(5):2659–2707, 2015.
  8. Daren Chen. Floer lasagna modules from link Floer homology. arXiv preprint arXiv:2203.07650, 2022.
  9. Categorification of the Jones-Wenzl projectors. Quantum Topol., 3(2):139–180, 2012.
  10. Fixing the functoriality of Khovanov homology. Geom. Topol., 13(3):1499–1582, 2009.
  11. Functoriality of colored link homologies. Proc. Lond. Math. Soc. (3), 117(5):996–1040, 2018.
  12. Derived traces of Soergel categories. Int. Math. Res. Not. IMRN, (15):11304–11400, 2022.
  13. Annular Khovanov homology and knotted Schur-Weyl representations. Compos. Math., 154(3):459–502, 2018.
  14. 4-manifolds and Kirby calculus. Number 20. American Mathematical Soc., 1999.
  15. Matthew Hogancamp. Categorified Young symmetrizers and stable homology of torus links. Geom. Topol., 22(5):2943–3002, 2018.
  16. Matthew Hogancamp. A polynomial action on colored 𝔰⁢𝔩2𝔰subscript𝔩2\mathfrak{sl}_{2}fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT link homology. Quantum Topol., 10(1):1–75, 2019.
  17. A Kirby color for Khovanov homology, 2022.
  18. Khovanov homology and exotic surfaces in the 4-ball. arXiv preprint arXiv:2108.04810, 2021.
  19. Mikhail Khovanov. A categorification of the Jones polynomial. Duke Math. J., 101(3):359–426, 2000.
  20. Mikhail Khovanov. A functor-valued invariant of tangles. Algebr. Geom. Topol., 2:665–741, 2002.
  21. Mikhail Khovanov. Patterns in knot cohomology. I. Experiment. Math., 12(3):365–374, 2003.
  22. Matrix factorizations and link homology. Fund. Math., 199(1):1–91, 2008.
  23. Eun Soo Lee. An endomorphism of the Khovanov invariant. Adv. Math., 197(2):554–586, 2005.
  24. Skein lasagna modules for 2-handlebodies. J. Reine Angew. Math., 788:37–76, 2022.
  25. Invariants of 4-manifolds from Khovanov-Rozansky link homology. Geom. Topol., 26(8):3367–3420, 2022.
  26. Skein lasagna modules and handle decompositions. Adv. Math., 425:Paper No. 109071, 40, 2023.
  27. On the Heegaard Floer homology of branched double-covers. Adv. Math., 194(1):1–33, 2005.
  28. Jacob Rasmussen. Khovanov homology and the slice genus. Invent. Math., 182(2):419–447, 2010.
  29. Lev Rozansky. A categorification of the stable SU(2) Witten-Reshetikhin-Turaev invariant of links in S2 x S1, 2010.
  30. Lev Rozansky. An infinite torus braid yields a categorified Jones-Wenzl projector. Fund. Math., 225(1):305–326, 2014.
  31. Taketo Sano. Fixing the functoriality of Khovanov homology: a simple approach. J. Knot Theory Ramifications, 30(11):Paper No. 2150074, 12, 2021.
  32. Michael Shulman. Homotopy limits and colimits and enriched homotopy theory. arXiv: Algebraic Topology, 2006.
  33. Pierre Vogel. Functoriality of Khovanov homology. J. Knot Theory Ramifications, 29(4):2050020, 66, 2020.
  34. Michael Willis. Khovanov homology for links in #r⁢(S2×S1)superscript#𝑟superscript𝑆2superscript𝑆1\#^{r}(S^{2}\times S^{1})# start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ). Michigan Math. J., 70(4):675–748, 2021.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.