On the Constant-Depth Circuit Complexity of Generating Quasigroups (2402.00133v4)
Abstract: We investigate the constant-depth circuit complexity of the Isomorphism Problem, Minimum Generating Set Problem (MGS), and Sub(quasi)group Membership Problem (Membership) for groups and quasigroups (=Latin squares), given as input in terms of their multiplication (Cayley) tables. Despite decades of research on these problems, lower bounds for these problems even against depth-$2$ AC circuits remain unknown. Perhaps surprisingly, Chattopadhyay, Tor\'an, and Wagner (FSTTCS 2010; ACM Trans. Comput. Theory, 2013) showed that Quasigroup Isomorphism could be solved by AC circuits of depth $O(\log \log n)$ using $O(\log2 n)$ nondeterministic bits, a class we denote $\exists{\log2(n)}FOLL$. We narrow this gap by improving the upper bound for many of these problems to $quasiAC0$, thus decreasing the depth to constant. In particular, we show: - MGS for quasigroups is in $\exists{\log2(n)}\forall{\log n}NTIME(\mathrm{polylog}(n))\subseteq quasiAC0$. Papadimitriou and Yannakakis (J. Comput. Syst. Sci., 1996) conjectured that this problem was $\exists{\log2(n)}P$-complete; our results refute a version of that conjecture for completeness under $quasiAC0$ reductions unconditionally, and under polylog-space reductions assuming EXP $\neq$ PSPACE. - MGS for groups is in $AC{1}(L)$, improving on the previous upper bound of $P$ (Lucchini & Thakkar, J. Algebra, 2024). - Quasigroup Isomorphism belongs to $\exists{\log2(n)}AC0(DTISP(\mathrm{polylog},\log)\subseteq quasiAC0$, improving on the previous bound of $\exists{\log2(n)}L\cap\exists{\log2(n)}FOLL\subseteq quasiFOLL$ (Chattopadhyay, Tor\'an, & Wagner, ibid.; Levet, Australas. J. Combin., 2023). Our results suggest that understanding the constant-depth circuit complexity may be key to resolving the complexity of problems concerning (quasi)groups in the multiplication table model.
- The expressive power of voting polynomials. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC ’91, page 402–409, New York, NY, USA, 1991. Association for Computing Machinery. doi:10.1145/103418.103461.
- A. A. Albert. Quasigroups. I. Transactions of the American Mathematical Society, 54(3):507–519, 1943. doi:10.2307/1990259.
- The complexity of quasigroup isomorphism and the minimum generating set problem. In Tetsuo Asano, editor, Algorithms and Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages 233–242. Springer, 2006. doi:10.1007/11940128_25.
- László Babai. On the complexity of canonical labeling of strongly regular graphs. SIAM Journal on Computing, 9(1):212–216, 1980. doi:10.1137/0209018.
- László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 684–697. ACM, New York, 2016. Preprint of full version at arXiv:1512.03547v2 [cs.DS]. doi:10.1145/2897518.2897542.
- D.A.M. Barrington. Quasipolynomial size circuit classes. In [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference, pages 86–93, 1992. doi:10.1109/SCT.1992.215383.
- On the complexity of some problems on groups input as multiplication tables. J. Comput. Syst. Sci., 63(2):186–200, 2001. doi:10.1006/jcss.2001.1764.
- David A. Mix Barrington and Pierre McKenzie. Oracle branching programs and Logspace versus P. Inf. Comput., 95(1):96–115, 1991. doi:10.1016/0890-5401(91)90017-V.
- R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. Pacific Journal of Mathematics, 13(2):389 – 419, 1963. doi:pjm/1103035734.
- R. H. Bruck. Finite nets. II. Uniqueness and imbedding. Pacific Journal of Mathematics, 13(2):421 – 457, 1963. doi:10.2140/pjm.1963.13.421.
- On the complexity of matrix group problems I. In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages 229–240. IEEE Computer Society, 1984. doi:10.1109/SFCS.1984.715919.
- David A. Mix Barrington and Howard Straubing. Complex polynomials and circuit lower bounds for modular counting. Comput. Complex., 4:325–338, 1994. doi:10.1007/BF01263421.
- Quasipolynomial-time canonical form for Steiner designs. In STOC 2013, pages 261–270, New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2488608.2488642.
- The theory of nilpotent groups. Birkhäuser/Springer, Cham, 2017.
- Graph isomorphism is not AC0superscriptAC0\rm AC^{0}roman_AC start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-reducible to group isomorphism. ACM Trans. Comput. Theory, 5(4):Art. 13, 13, 2013. Preliminary version appeared in FSTTCS ’10; ECCC Tech. Report TR10-117. doi:10.1145/2540088.
- The isomorphism problem for plain groups is in Σ3𝗉superscriptsubscriptΣ3𝗉\Sigma_{3}^{\mathsf{p}}roman_Σ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT sansserif_p end_POSTSUPERSCRIPT. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.26.
- Algorithms for the minimum generating set problem, 2023. arXiv:2305.08405.
- Group isomorphism is nearly-linear time for most orders. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 457–467, 2022. doi:10.1109/FOCS52979.2021.00053.
- Proper hierarchies in polylogarithmic time and absence of complete problems. In Andreas Herzig and Juha Kontinen, editors, Foundations of Information and Knowledge Systems, pages 90–105, Cham, 2020. Springer International Publishing.
- Lukas Fleischer. The Cayley semigroup membership problem. Theory of Computing, 18(8):1–18, 2022. doi:10.4086/toc.2022.v018a008.
- On the Parallel Complexity of Group Isomorphism via Weisfeiler-Leman. In Henning Fernau and Klaus Jansen, editors, Fundamentals of Computation Theory - 24th International Symposium, FCT 2023, Trier, Germany, September 18-21, 2023, Proceedings, volume 14292 of Lecture Notes in Computer Science, pages 234–247. Springer, 2023. Preprint of full version at arXiv:2112.11487 [cs.DS]. doi:10.1007/978-3-031-43587-4_17.
- Algorithms for group isomorphism via group extensions and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE Conference on Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also available as arXiv:1309.1776 [cs.DS] and ECCC Technical Report TR13-123. doi:10.1137/15M1009767.
- Uniform constant-depth threshold circuits for division and iterated multiplication. Journal of Computer and System Sciences, 65(4):695–716, 2002. Special Issue on Complexity 2001. doi:10.1016/S0022-0000(02)00025-9.
- Graph isomorphisms in quasi-polynomial time, 2017. doi:10.48550/ARXIV.1710.04574.
- Learnability beyond 𝖠𝖢0superscript𝖠𝖢0\textsf{AC}^{0}AC start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page 776–784, New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.510018.
- Computing generating sets of minimal size in finite algebras. J. Symb. Comput., 119:50–63, 2023. doi:10.1016/J.JSC.2023.02.002.
- Michael Levet. On the complexity of identifying strongly regular graphs. Australasian Journal of Combinatorics, 87:41–67, 2023. URL: https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p041.pdf.
- On the group and color isomorphism problems. arXiv:1609.08253 [cs.CC], 2016.
- Computing a set of generators of minimal cardinality in a solvable group. Journal of Symbolic Computation, 17(5):409–420, 1994. doi:10.1006/jsco.1994.1027.
- The complexity of word and isomorphism problems for finite groups. Yale University Dept. of Computer Science Research Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf.
- The minimum generating set problem. Journal of Algebra, 640:117–128, 2024. doi:10.1016/j.jalgebra.2023.11.012.
- Gary L. Miller. On the nlognsuperscript𝑛𝑛n^{\log n}italic_n start_POSTSUPERSCRIPT roman_log italic_n end_POSTSUPERSCRIPT isomorphism technique (a preliminary report). In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 51–58, New York, NY, USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804331.
- A. Neumaier. Strongly regular graphs with smallest eigenvalue −m𝑚-m- italic_m. Archiv der Mathematik, 33:392–400, 1979. doi:10.1007/BF01222774.
- On limited nondeterminism and the complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996. doi:10.1006/JCSS.1996.0058.
- Alexander A Razborov. An Equivalence between Second Order Bounded Domain Bounded Arithmetic and First Order Bounded Arithmetic. In Arithmetic, proof theory, and computational complexity. Oxford University Press, 05 1993. doi:10.1093/oso/9780198536901.003.0012.
- Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008. doi:10.1145/1391289.1391291.
- D. Robinson. A Course in the Theory of Groups. Springer, 1982.
- David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomorphism testing. arXiv:1304.3935 [cs.DS], 2013.
- Jean-Pierre Serre. Galois Cohomology. Springer Berlin, Heidelberg, 1 edition, 1997. doi:10.1007/978-3-642-59141-9.
- Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:10.1145/28395.28404.
- Bangsheng Tang. Towards Understanding Satisfiability, Group Isomorphism and Their Connections. PhD thesis, Tsinghua University, 2013. URL: http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf.
- D. R. Taunt. Remarks on the isomorphism problem in theories of construction of finite groups. Mathematical Proceedings of the Cambridge Philosophical Society, 51(1):16–24, 1955. doi:10.1017/S030500410002987X.
- Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108, 2004. doi:10.1137/S009753970241096X.
- Characterization of the finite simple groups by spectrum and order. Algebra and Logic, 48:385–409, 12 2009. doi:10.1007/s10469-009-9074-9.
- Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.
- F. Wagner. On the complexity of isomorphism testing for restricted classes of graphs. PhD thesis, Universität Ulm, 2010. URL: https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf.
- Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. Theoretical Computer Science, 125(2):295–313, 1994. doi:10.1016/0304-3975(92)00014-I.