Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

SU-SAM: A Simple Unified Framework for Adapting Segment Anything Model in Underperformed Scenes (2401.17803v2)

Published 31 Jan 2024 in cs.CV

Abstract: Segment anything model (SAM) has demonstrated excellent generalizability in common vision scenarios, yet falling short of the ability to understand specialized data. Recently, several methods have combined parameter-efficient techniques with task-specific designs to fine-tune SAM on particular tasks. However, these methods heavily rely on handcraft, complicated, and task-specific designs, and pre/post-processing to achieve acceptable performances on downstream tasks. As a result, this severely restricts generalizability to other downstream tasks. To address this issue, we present a simple and unified framework, namely SU-SAM, that can easily and efficiently fine-tune the SAM model with parameter-efficient techniques while maintaining excellent generalizability toward various downstream tasks. SU-SAM does not require any task-specific designs and aims to improve the adaptability of SAM-like models significantly toward underperformed scenes. Concretely, we abstract parameter-efficient modules of different methods into basic design elements in our framework. Besides, we propose four variants of SU-SAM, i.e., series, parallel, mixed, and LoRA structures. Comprehensive experiments on nine datasets and six downstream tasks to verify the effectiveness of SU-SAM, including medical image segmentation, camouflage object detection, salient object segmentation, surface defect segmentation, complex object shapes, and shadow masking. Our experimental results demonstrate that SU-SAM achieves competitive or superior accuracy compared to state-of-the-art methods. Furthermore, we provide in-depth analyses highlighting the effectiveness of different parameter-efficient designs within SU-SAM. In addition, we propose a generalized model and benchmark, showcasing SU-SAM's generalizability across all diverse datasets simultaneously.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.