Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Quantum Simulation of Non-Markovian Open Quantum Dynamics: A Universal and Compact Theory (2401.17255v4)

Published 30 Jan 2024 in quant-ph, cond-mat.str-el, and physics.chem-ph

Abstract: Non-Markovianity, the intricate dependence of an open quantum system on its temporal evolution history, holds tremendous implications across various scientific disciplines. However, accurately characterizing the complex non-Markovian effects has posed a formidable challenge for numerical simulations. While quantum computing technologies show promise, a universal theory enabling practical quantum algorithm implementation has been elusive. We address this gap by introducing the dissipaton-embedded quantum master equation in second quantization (DQME-SQ). This exact and compact theory offers two key advantages: representability by quantum circuits and universal applicability to any Gaussian environment. We demonstrate these capabilities through digital quantum simulations of non-Markovian dissipative dynamics in both bosonic and fermionic environments. The DQME-SQ framework opens a new horizon for the efficient exploration of complex open quantum systems by leveraging the rapidly advancing quantum computing technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2021, 5th edition.
  2. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2002.
  3. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, Singapore, 5th edition, 2009.
  4. A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems, Oxford University Press, New York, 2006.
  5. Rev. Mod. Phys. 88, 045005 (2016).
  6. Phys. Rev. Lett. 111, 086601 (2013).
  7. Rev. Mod. Phys. 88, 021002 (2016).
  8. I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
  9. Science 316, 1462 (2007).
  10. Nature 446, 782 (2007).
  11. Phys. Rev. E 91, 022706 (2015).
  12. J. Chem. Phys. 157, 015101 (2022).
  13. Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
  14. Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
  15. Chem. Phys. Lett. 395, 216 (2004).
  16. Phys. Rev. E 75, 031107 (2007).
  17. J. S. Shao, J. Chem. Phys. 120, 5053 (2004).
  18. J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
  19. J. Chem. Phys. 139, 134106 (2013).
  20. Phys. Rev. Lett. 123, 050601 (2019).
  21. Phys. Rev. Lett. 120, 030402 (2018).
  22. Phys. Rev. Lett. 123, 090402 (2019).
  23. Nature Comm. 10, 3721 (2019).
  24. Phys. Rev. Lett. 113, 150403 (2014).
  25. Y. Zhao, J Chem. Phys. 158, 080901 (2023).
  26. J. Chem. Phys. 156, 194102 (2022).
  27. Phys. Rev. Lett. 129, 230601 (2022).
  28. Y. L. Ke and Y. Zhao, J. Chem. Phys. 145, 024101 (2016).
  29. Rev. Mod. Phys. 76, 1037 (2004).
  30. Nature 464, 45 (2010).
  31. Nature 549, 195 (2017).
  32. Chem. Rev. 119, 10856 (2019).
  33. Rev. Mod. Phys. 92, 015003 (2020).
  34. Phys. Rev. Lett. 125, 260511 (2020).
  35. Nat. Comput. Sci. 3, 25 (2023).
  36. Nature 607, 667 (2022).
  37. R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
  38. C. Gross and I. Bloch, Science 357, 995 (2017).
  39. PRX Quantum 3, 010320 (2022).
  40. arXiv:2311.15240 (2023).
  41. arXiv:2310.12539 (2023).
  42. J Chem. Phys. 160, 054101 (2024).
  43. Nature 470, 486 (2011).
  44. Phys. Rev. Res. 4, 043161 (2022).
  45. X. Li and C. Wang, Commun. Math. Phys. 401, 147 (2023).
  46. Phys. Rev. Res. 6, 013143 (2024).
  47. Phys. Rev. Lett. 127, 270503 (2021).
  48. Phys. Rev. Res. 4, 023216 (2022).
  49. Phys. Rev. Res. 3, 013182 (2021).
  50. Phys. Rev. Lett. 95, 250503 (2005).
  51. Phys. Rev. Lett. 125, 010501 (2020).
  52. PRX Quantum 2, 030307 (2021).
  53. J. Chem. Theory Comput. 19, 4851 (2023).
  54. J Chem. Phys. 158, 214110 (2023).
  55. Y. J. Yan, J. Chem. Phys. 140, 054105 (2014).
  56. J. Chem. Phys. 157, 044102 (2022).
  57. J. Chem. Phys. 156, 221102 (2022).
  58. See Supplemental Material for detailed analytic derivations regarding the DQME-SQ theory and its numerical implementation.
  59. L. Gui-Lu, Commun. Theor. Phys. 45, 825 (2006).
  60. Qiskit contributors, Qiskit: An open-source framework for quantum computing, 2023.
  61. Rev. Mod. Phys. 82, 1155 (2010).
  62. Nat. Phys. 10, 825 (2014).
  63. Phys. Rev. Lett. 115, 266802 (2015).
  64. Nat. Phys. 16, 1184 (2020).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com