Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulating Non-Markovian Open Quantum Dynamics with Neural Quantum States (2404.11093v2)

Published 17 Apr 2024 in quant-ph and cs.LG

Abstract: Reducing computational scaling for simulating non-Markovian dissipative dynamics using artificial neural networks is both a major focus and formidable challenge in open quantum systems. To enable neural quantum states (NQSs), we encode environmental memory in dissipatons (quasiparticles with characteristic lifetimes), yielding the dissipaton-embedded quantum master equation (DQME). The resulting NQS-DQME framework achieves compact representation of many-body correlations and non-Markovian memory. Benchmarking against numerically exact hierarchical equations of motion confirms NQS-DQME maintains comparable accuracy while enhancing scalability and interpretability. This methodology opens new paths to explore non-Markovian open quantum dynamics in previously intractable systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Nature 446, 782 (2007).
  2. G. D. Scholes, J. Phys. Chem. Lett. 1, 2 (2010).
  3. Science 340, 1448 (2013).
  4. M. Kasha, Radiat. Res. 20, 55 (1963).
  5. Chem. Rev. 118, 7069 (2018).
  6. M. Thoss and F. Evers, J. Chem. Phys. 148, 030901 (2018).
  7. J. Phys. Chem. C 125, 6990 (2021).
  8. J. Chem. Phys. 147, 114201 (2017).
  9. Nat. Commun. 9, 4823 (2018).
  10. C. Monroe, Nature 416, 238 (2002).
  11. Chem. Rev. 121, 3061 (2020).
  12. Rev. Mod. Phys. 94, 045008 (2022).
  13. Rev. Mod. Phys. 88, 021002 (2016).
  14. I. De Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
  15. J. Phys. Chem. Lett. 9, 2418 (2018).
  16. Nat. Commun. 11, 1 (2020).
  17. Science 329, 1628 (2010).
  18. Science 366, 509 (2019).
  19. Science 372, 964 (2021).
  20. Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
  21. Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
  22. Chem. Phys. Lett 395, 216 (2004).
  23. J. Chem. Phys. 128, 234703 (2008).
  24. Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
  25. Y. Yan, J. Chem. Phys. 140, 054105 (2014).
  26. Front. Phys. 11, 1 (2016).
  27. B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
  28. Phys. Rev. Lett. 120, 030402 (2018).
  29. Nat. Commun. 10, 3721 (2019).
  30. Phys. Rev. Res. 5, 033011 (2023).
  31. Phys. Rev. A 58, 1699 (1998).
  32. Phys. Rev. Lett. 82, 1801 (1999).
  33. W. T. Strunz and T. Yu, Phys. Rev. A 69, 052115 (2004).
  34. J. Jing and T. Yu, Phys. Rev. Lett. 105, 240403 (2010).
  35. V. Link and W. T. Strunz, Phys. Rev. Lett. 119, 180401 (2017).
  36. J. Shao, J. Chem. Phys. 120, 5053 (2004).
  37. Phys. Rev. Lett. 123, 050601 (2019).
  38. J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
  39. Y. Ke and Y. Zhao, J. Chem. Phys. 146, 214105 (2017).
  40. Phys. Rev. Lett. 113, 150403 (2014).
  41. Phys. Rev. Lett. 115, 266802 (2015).
  42. Phys. Rev. Lett. 130, 186301 (2023).
  43. Rev. Mod. Phys. 93, 015008 (2021).
  44. Europhys. Lett. 24, 293 (1993).
  45. J. Chem. Phys. 148, 174102 (2018).
  46. J. Chem. Phys. 156, 194102 (2022).
  47. Phys. Rev. Lett. 128, 063601 (2022).
  48. S. R. White, Nat. Rev. Phys. 5, 264 (2023).
  49. Phys. Rev. Lett. 93, 076401 (2004).
  50. C. A. Büsser and F. Heidrich-Meisner, Phys. Rev. Lett. 111, 246807 (2013).
  51. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
  52. Chem. Phys. Lett 165, 73 (1990).
  53. Phys. Rep. 324, 1 (2000).
  54. J. Chem. Phys. 115, 2979 (2001).
  55. H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
  56. Nat. Commun. 9, 3322 (2018).
  57. Phys. Rev. Lett. 123, 240602 (2019).
  58. Phys. Rev. B 107, 195429 (2023).
  59. G. Carleo and M. Troyer, Science 355, 602 (2017).
  60. Nat. Rev. Chem. (2023).
  61. J. Chem. Theory Comput. 19, 8156 (2023).
  62. G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
  63. A. Nagy and V. Savona, Phys. Rev. Lett. 122, 250501 (2019).
  64. M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
  65. Phys. Rev. Lett. 122, 250503 (2019).
  66. Physics 12 (2019).
  67. Towards quantum simulation of non-markovian open quantum dynamics: A universal and compact theory, https://arxiv.org/abs/2401.17255v2, 2024.
  68. J. Chem. Phys. 148, 234108 (2018).
  69. J. Chem. Phys. 157, 224107 (2022).
  70. Nat. Commun. 9, 5322 (2018).
  71. Int. J. Quantum. Inf. 16, 1840008 (2018).
  72. Phys. Rev. X 8, 011006 (2018).
  73. J. Chem. Phys. 142, 104112 (2015).
  74. Sci. Rep. 2, 243 (2012).
  75. Phys. Rev. Lett. 109, 266403 (2012).
  76. J. Chem. Phys. 158, 014106 (2023).
  77. WIREs Comput. Mol. Sci. 6, 608 (2016).
  78. HEOM-QUICK2: a general-purpose simulator for fermionic many-body open quantum systems, https://arxiv.org/abs/2401.01715, 2024.
  79. J. Chem. Theory Comput. 19, 6011 (2023).
  80. Science 382, 87 (2023).
  81. Phys. Rev. Lett. 103, 197202 (2009).
  82. J. Parks et al., Science 328, 1370 (2010).
  83. X. Li et al., Nat. Commun. 11, 2566 (2020).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com