Simulating Non-Markovian Open Quantum Dynamics with Neural Quantum States (2404.11093v2)
Abstract: Reducing computational scaling for simulating non-Markovian dissipative dynamics using artificial neural networks is both a major focus and formidable challenge in open quantum systems. To enable neural quantum states (NQSs), we encode environmental memory in dissipatons (quasiparticles with characteristic lifetimes), yielding the dissipaton-embedded quantum master equation (DQME). The resulting NQS-DQME framework achieves compact representation of many-body correlations and non-Markovian memory. Benchmarking against numerically exact hierarchical equations of motion confirms NQS-DQME maintains comparable accuracy while enhancing scalability and interpretability. This methodology opens new paths to explore non-Markovian open quantum dynamics in previously intractable systems.
- Nature 446, 782 (2007).
- G. D. Scholes, J. Phys. Chem. Lett. 1, 2 (2010).
- Science 340, 1448 (2013).
- M. Kasha, Radiat. Res. 20, 55 (1963).
- Chem. Rev. 118, 7069 (2018).
- M. Thoss and F. Evers, J. Chem. Phys. 148, 030901 (2018).
- J. Phys. Chem. C 125, 6990 (2021).
- J. Chem. Phys. 147, 114201 (2017).
- Nat. Commun. 9, 4823 (2018).
- C. Monroe, Nature 416, 238 (2002).
- Chem. Rev. 121, 3061 (2020).
- Rev. Mod. Phys. 94, 045008 (2022).
- Rev. Mod. Phys. 88, 021002 (2016).
- I. De Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
- J. Phys. Chem. Lett. 9, 2418 (2018).
- Nat. Commun. 11, 1 (2020).
- Science 329, 1628 (2010).
- Science 366, 509 (2019).
- Science 372, 964 (2021).
- Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
- Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
- Chem. Phys. Lett 395, 216 (2004).
- J. Chem. Phys. 128, 234703 (2008).
- Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
- Y. Yan, J. Chem. Phys. 140, 054105 (2014).
- Front. Phys. 11, 1 (2016).
- B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
- Phys. Rev. Lett. 120, 030402 (2018).
- Nat. Commun. 10, 3721 (2019).
- Phys. Rev. Res. 5, 033011 (2023).
- Phys. Rev. A 58, 1699 (1998).
- Phys. Rev. Lett. 82, 1801 (1999).
- W. T. Strunz and T. Yu, Phys. Rev. A 69, 052115 (2004).
- J. Jing and T. Yu, Phys. Rev. Lett. 105, 240403 (2010).
- V. Link and W. T. Strunz, Phys. Rev. Lett. 119, 180401 (2017).
- J. Shao, J. Chem. Phys. 120, 5053 (2004).
- Phys. Rev. Lett. 123, 050601 (2019).
- J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
- Y. Ke and Y. Zhao, J. Chem. Phys. 146, 214105 (2017).
- Phys. Rev. Lett. 113, 150403 (2014).
- Phys. Rev. Lett. 115, 266802 (2015).
- Phys. Rev. Lett. 130, 186301 (2023).
- Rev. Mod. Phys. 93, 015008 (2021).
- Europhys. Lett. 24, 293 (1993).
- J. Chem. Phys. 148, 174102 (2018).
- J. Chem. Phys. 156, 194102 (2022).
- Phys. Rev. Lett. 128, 063601 (2022).
- S. R. White, Nat. Rev. Phys. 5, 264 (2023).
- Phys. Rev. Lett. 93, 076401 (2004).
- C. A. Büsser and F. Heidrich-Meisner, Phys. Rev. Lett. 111, 246807 (2013).
- U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
- Chem. Phys. Lett 165, 73 (1990).
- Phys. Rep. 324, 1 (2000).
- J. Chem. Phys. 115, 2979 (2001).
- H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
- Nat. Commun. 9, 3322 (2018).
- Phys. Rev. Lett. 123, 240602 (2019).
- Phys. Rev. B 107, 195429 (2023).
- G. Carleo and M. Troyer, Science 355, 602 (2017).
- Nat. Rev. Chem. (2023).
- J. Chem. Theory Comput. 19, 8156 (2023).
- G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
- A. Nagy and V. Savona, Phys. Rev. Lett. 122, 250501 (2019).
- M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
- Phys. Rev. Lett. 122, 250503 (2019).
- Physics 12 (2019).
- Towards quantum simulation of non-markovian open quantum dynamics: A universal and compact theory, https://arxiv.org/abs/2401.17255v2, 2024.
- J. Chem. Phys. 148, 234108 (2018).
- J. Chem. Phys. 157, 224107 (2022).
- Nat. Commun. 9, 5322 (2018).
- Int. J. Quantum. Inf. 16, 1840008 (2018).
- Phys. Rev. X 8, 011006 (2018).
- J. Chem. Phys. 142, 104112 (2015).
- Sci. Rep. 2, 243 (2012).
- Phys. Rev. Lett. 109, 266403 (2012).
- J. Chem. Phys. 158, 014106 (2023).
- WIREs Comput. Mol. Sci. 6, 608 (2016).
- HEOM-QUICK2: a general-purpose simulator for fermionic many-body open quantum systems, https://arxiv.org/abs/2401.01715, 2024.
- J. Chem. Theory Comput. 19, 6011 (2023).
- Science 382, 87 (2023).
- Phys. Rev. Lett. 103, 197202 (2009).
- J. Parks et al., Science 328, 1370 (2010).
- X. Li et al., Nat. Commun. 11, 2566 (2020).