Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Almost all orbits of an analogue of the Collatz map on the reals attain bounded values (2401.17241v1)

Published 30 Jan 2024 in math.DS, math.CO, math.NT, and math.PR

Abstract: Motivated by a balanced ternary representation of the Collatz map we define the map $C_\mathbb{R}$ on the positive real numbers by setting $C_\mathbb{R}(x)=\frac{1}{2}x$ if $[x]$ is even and $C_\mathbb{R}(x)=\frac{3}{2}x$ if $[x]$ is odd, where $[x]$ is defined by $[x]\in\mathbb{Z}$ and $x-[x]\in(-\frac{1}{2},\frac{1}{2}]$. We show that there exists a constant $K>0$ such that the set of $x$ fulfilling $\liminf_{n\in\mathbb{N}}C_\mathbb{R}n(x)\leq K$ is Lebesgue-co-null. We also show that for any $\epsilon>0$ the set of $x$ for which $ (\frac{3{\frac{1}{2}}}{2})kx{1-\epsilon}\leq C_\mathbb{R}k(x)\leq (\frac{3{\frac{1}{2}}}{2})kx{1+\epsilon}$ for all $0\leq k\leq \frac{1}{1-\frac{\log_23}{2}}\log_2x$ is large for a suitable notion of largeness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com