2000 character limit reached
Instantons, fluctuations and singularities in the supercritical stochastic nonlinear Schroedinger equation (2401.16264v1)
Published 29 Jan 2024 in physics.flu-dyn, cond-mat.stat-mech, and nlin.PS
Abstract: Recently, Josserand et al. proposed a stochastic nonlinear Schroedinger model for finite-time singularity-mediated turbulence [Phys. Rev. Fluids 5, 054607 (2020)]. Here, we use instanton calculus to quantify the effect of extreme fluctuations on the statistics of the energy dissipation rate. While the contribution of the instanton alone is insufficient, we obtain excellent agreement with direct simulations when including Gaussian fluctuations and the corresponding zero mode. Fluctuations are crucial to obtain the correct scaling when quasi-singular events govern the turbulence statistics.
- U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
- J. M. Burgers, Adv. Appl. Mech. 1, 171 (1948).
- P. Manneville, Phys. lett., A 84, 129 (1981).
- Y. Chung, P. M. Lushnikov, and N. Vladimirova, AIP Conf Proc 1168, 1235 (2009).
- C. Josserand, Y. Pomeau, and S. Rica, Phys. Rev. Fluid 5, 054607 (2020).
- V. E. Zakharov and A. B. Shabat, Sov. phys. JETP 34, 62 (1972).
- A. Hasegawa and Y. Kodama, Solitions in optical communications (Clarendon Press, Oxford, 1995).
- G. P. Agrawal, Nonlinear Fiber Optics, 6th ed. (Academic Press, 2019).
- V. E. Zakharov, Sov. phys. JETP 35, 908 (1972).
- G. Fibich, The nonlinear Schrödinger equation: Singular Solutions and Optical Collapse (Springer, 2015).
- U. Frisch and G. Parisi, in Proceedings of the Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (Elsevier: Amsterdam, The Netherlands, 1985) p. 84–88.
- Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994).
- J. Duchon and R. Robert, Nonlinearity 13, 249 (2000).
- O. Zikanov, A. Thess, and R. Grauer, Phys. Fluids 9, 1362 (1997).
- T. Grafke, R. Grauer, and T. Schäfer, J. Phys. A Math. Theor. 48, 333001 (2015).
- S. R. S. Varadhan, Large Deviations and Applications (Society for Industrial and Applied Mathematics, 1984).
- M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 3rd ed., Grundlehren der mathematischen Wissenschaften, Vol. 260 (Springer, 2012).
- L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
- S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953).
- H.-K. Janssen, Z. Phys., B Condens. matter quanta 23, 377 (1976).
- de Dominicis, C., J. Phys. Colloques 37, C1 (1976).
- T. Schorlepp, T. Grafke, and R. Grauer, J. Phys. A Math. Theor. 54, 235003 (2021).
- T. Grafke, T. Schäfer, and E. Vanden-Eijnden, Commun. Pure Appl. Math. , 1 (2023).
- F. Bouchet and J. Reygner, J Stat Phys 189, 21 (2022).
- V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996).
- A. I. Chernykh and M. G. Stepanov, Phys. Rev. E 64, 026306 (2001).
- I. Terekhov, S. Vergeles, and S. Turitsyn, Phys. Rev. Lett. 113, 230602 (2014).
- G. Poppe and T. Schäfer, J. Phys. A Math. Theor. 51, 335102 (2018).
- M. Alqahtani and T. Grafke, J. Phys. A Math. Theor. 54, 175001 (2021).
- R.-E. Plessix, Geophys J Int 167, 495 (2006).
- D. C. Liu and J. Nocedal, Math Program 45, 503 (1989).
- T. Schorlepp, T. Grafke, and R. Grauer, J Stat Phys 190, 50 (2023b).
- L. D. Faddeev and V. N. Popov, Phys. Lett. B 25, 29 (1967).
- R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide (Society for Industrial and Applied Mathematics, 1998).
- L. D. Brown, T. T. Cai, and A. DasGupta, Stat Sci 16, 101 (2001).
- A. Lang and J. Potthoff, Monte Carlo Methods Appl 17, 195 (2011).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.