Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Neutrino Reconstruction in TRIDENT Based on Graph Neural Network (2401.15324v1)

Published 27 Jan 2024 in hep-ex and cs.AI

Abstract: TRopIcal DEep-sea Neutrino Telescope (TRIDENT) is a next-generation neutrino telescope to be located in the South China Sea. With a large detector volume and the use of advanced hybrid digital optical modules (hDOMs), TRIDENT aims to discover multiple astrophysical neutrino sources and probe all-flavor neutrino physics. The reconstruction resolution of primary neutrinos is on the critical path to these scientific goals. We have developed a novel reconstruction method based on graph neural network (GNN) for TRIDENT. In this paper, we present the reconstruction performance of the GNN-based approach on both track- and shower-like neutrino events in TRIDENT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. R. Abbasi et al., “Evidence for high-energy extraterrestrial neutrinos at the icecube detector,” Science, vol. 342, no. 6161, p. 1242856, 2013.
  2. R. Abbasi et al., “Neutrino emission from the direction of the blazar txs 0506+056 prior to the icecube-170922a alert,” Science, vol. 361, no. 6398, pp. 147–151, 2018.
  3. R. Abbasi et al., “Evidence for neutrino emission from the nearby active galaxy ngc 1068,” Science, vol. 378, no. 6619, pp. 538–543, 2022.
  4. L. Wille and D. Xu, “Astrophysical tau neutrino identification with icecube waveforms,” 2019.
  5. R. Abbasi et al., “A convolutional neural network based cascade reconstruction for the IceCube neutrino observatory,” Journal of Instrumentation, vol. 16, no. 7, p. P07041, 2021.
  6. F. J. Yu, J. Lazar, and C. A. Argüelles, “Trigger-level event reconstruction for neutrino telescopes using sparse submanifold convolutional neural networks,” 2023. arXiv:2303.08812.
  7. R. Abbasi et al., “Graph neural networks for low-energy event classification & reconstruction in IceCube,” Journal of Instrumentation, vol. 17, p. P11003, nov 2022.
  8. K. Melis, A. Heijboer, and M. de Jong, “KM3NeT/ARCA Event Reconstruction Algorithms,” PoS, vol. ICRC2017, p. 950, 2018.
  9. S. Aiello et al., “Event reconstruction for KM3net/ORCA using convolutional neural networks,” Journal of Instrumentation, vol. 15, pp. P10005–P10005, oct 2020.
  10. T. Huege, “Corsika 8 – the next-generation air shower simulation framework,” 2022. arXiv:2208.14240.
  11. C. Bierlich et al., “A comprehensive guide to the physics and usage of pythia 8.3,” 2022. arXiv:2203.11601.
  12. S. Blyth, “Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiXTM,” EPJ Web Conf., vol. 214, p. 02027, 2019.
  13. H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Physical Review D, vol. 101, mar 2020.
  14. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.
  15. M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube