Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Direct high-precision measurement of the mass difference of $^{77}$As-$^{77}$Se related to neutrino mass determination (2401.15242v2)

Published 26 Jan 2024 in nucl-ex

Abstract: The first direct determination of the ground-state-to-ground-state ${\beta{-}}$-decay $Q$-value of ${77}$As to ${77}$Se was performed by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The resulting $Q$-value is 684.463(70) keV, representing a remarkable 24-fold improvement in precision compared to the value reported in the most recent Atomic Mass Evaluation (AME2020). With the significant reduction of the uncertainty of the ground-state-to-ground-state $Q$-value and knowledge of the excitation energies in ${77}$Se from $\gamma$-ray spectroscopy, the ground-state-to-excited-state $Q$-value of the transition ${77}$As (3/2${-}$, ground state) $\rightarrow$ ${77}$Se${*}$ (5/2${+}$, 680.1035(17) keV) was refined to be 4.360(70) keV. We confirm that this potential low $Q$-value ${\beta{-}}$-decay transition for neutrino mass determination is energetically allowed at a confidence level of about 60$\sigma$. Nuclear shell-model calculations with two well-established effective Hamiltonians were used to estimate the partial half-life for the low $Q$-value transition. The half-life was found to be of the order of 10${9}$ years for this first-forbidden non-unique transition, which rules out this candidate a potential source for rare-event experiments searching for the electron antineutrino mass.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. SNO Collaboration, Physical Review Letters 89, 1 (2002), arXiv:0204008 [nucl-ex] .
  2. M. Gerbino and M. Lattanzi, Frontiers in Physics 5 (2018), 10.3389/fphy.2017.00070.
  3. J. Suhonen and O. Civitarese, Physics Reports 300, 123 (1998).
  4. A. Nucciotti, Nuclear Physics B - Proceedings Supplements 229-232, 155 (2012), arXiv:1012.2290 .
  5. M. T. Mustonen and J. Suhonen, Journal of Physics G: Nuclear and Particle Physics 37, 64008 (2010).
  6. M. Mustonen and J. Suhonen, Physics Letters B 703, 370 (2011).
  7. M. Haaranen and J. Suhonen, The European Physical Journal A 49, 1 (2013).
  8. J. Suhonen, Physica Scripta 89, 54032 (2014).
  9. “National nuclear data center,” Available at https://www.nndc.bnl.gov/ (2023/12/20) (2023).
  10. M. Redshaw, The European Physical Journal A 59, 18 (2023).
  11. T. Eronen and J. C. Hardy, European Physical Journal A 48, 1 (2012).
  12. M. Kretzschmar, AIP Conf. Proc. 457, 242 (1999).
  13. R. T. Birge, Physical Review 40, 207 (1932).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com