Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounded-degree Low Rank Parity Check Codes (2401.15195v1)

Published 26 Jan 2024 in cs.IT and math.IT

Abstract: Low rank parity check (LRPC) codes are the rank-metric analogue of low density parity check codes. In this paper we investigate a sub-family of LRPC codes, which have a parity check matrix defined over a subspace $V_{\alpha,d}=\langle 1,\alpha, \ldots, \alpha{d-1}\rangle_{\mathbb{F}_q}\subsetneq \mathbb{F}{qm}$, where $\mathbb{F}{qm}$ is the finite field of $qm$ elements and $d$ is significantly smaller than $m $. These codes are named bounded-degree LRPC (BD-LRPC) codes and are the same as the standard LRPC codes of density $2$ when the degree $d=2$, while BD-LRPC codes of degree $d>2$ constitute a proper subset of LRPC codes of density $d$. Exploiting the particular structure of their parity check matrix, we show that the BD-LRPC codes of degree $d$ can uniquely correct errors of rank weight $r$ when $n-k \geq r + u$ for certain $u \geq 1$, in contrast to the condition $n-k\geq dr$ required for the standard LRPC codes, where $d\geq n/(n-k)$. This underscores the superior decoding capability of the proposed BD-LRPC codes. As the code length $n$ approaches infinity, when $n/m\rightarrow 0$, it is shown that $u$ can be chosen as a certain constant, which indicates that the BD-LRPC codes with a code rate of $R$ can be, with a high probability, uniquely decodable with the decoding radius $\rho=r/n$ approaching the Singleton bound $1-R$ for $n \to \infty$; and when $b= n/m$ is a constant, the BD-LRPC codes can have unique decoding radius $\rho = 1-R-\epsilon $ for a small $\epsilon$, which can easily lead to $\rho>(1-R)/2$ with properly chosen parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Durandal: A Rank Metric Based Signature Scheme, pages 728–758. Springer, 04 2019.
  2. Low rank parity check codes: New decoding algorithms and applications to cryptography. IEEE Transactions on Information Theory, 65(12):7697–7717, 2019.
  3. Rank-Metric Codes and Their Applications, volume 19(3), page 390–546. 2022.
  4. H. Bartz and V. Sidorenko. Algebraic decoding of folded gabidulin codes. Designs, Codes and Cryptography, 82(1-2):449–467, 2016.
  5. Y. Ding. On list-decodability of random rank metric codes and subspace codes. IEEE Transactions on Information Theory, 61(1):51–59, 2015.
  6. E. Franch and C. Li. Two new algorithms for error support recovery of low rank parity check codes. In 2023 IEEE International Symposium on Information Theory (ISIT), pages 2368–2373, 2023.
  7. E. Gabidulin. Rank Codes. TUM.University Press, 2021.
  8. E. M. Gabidulin. Theory of codes with maximum rank distance. Problemy Peredachi Informatsii, 21(1):3–16, 1985.
  9. Ideals over a non-commutative ring and their application in cryptology. In D. W. Davies, editor, Advances in Cryptology – EUROCRYPT’91, pages 482–489. Springer, 1991.
  10. Identity-based encryption from codes with rank metric. In J. Katz and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 194–224. Springer International Publishing, 2017.
  11. Identity-based encryption from codes with rank metric. In J. Katz and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 194–224, Cham, 2017. Springer International Publishing.
  12. Ranksign: an efficient signature algorithm based on the rank metric. In M. Mosca, editor, Post-Quantum Cryptography, pages 88–107. Springer International Publishing, 2014.
  13. R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory, 8(1):21–28, 1962.
  14. Explicit list-decodable rank-metric and subspace codes via subspace designs. IEEE Transactions on Information Theory, 62(5):2707–2718, 2016.
  15. D. E. Knuth. Subspaces, subsets, and partitions. Journal of Combinatorial Theory, Series A, 10(2):178–180, 1971.
  16. ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). In Second round submission to the NIST post-quantum cryptography call, April, 2020.
  17. Low rank parity check codes and their application to cryptography. in proceedings of the workshop on coding and cryptography WCC’2013 Bergen Norway 2013. available on www.selmer.uib.no/wcc2013/pdfs/gaborit.pdf.
  18. N. Raviv and A. Wachter-Zeh. Some Gabidulin codes cannot be list decoded efficiently at any radius. IEEE Transactions on Information Theory, 62(4):1605–1615, 2016.
  19. R. M. Roth. Maximum-rank array codes and their application to crisscross error correction. IEEE Transactions on Information Theory, 37(2):328–336, 1991.
  20. A rank-metric approach to error control in random network coding. IEEE Transactions on Information Theory, 54(9):3951–3967, Sept 2008.
  21. Communication over finite-field matrix channels. IEEE Transactions on Information Theory, 56(3):1296–1305, mar 2010.
  22. A. Wachter-Zeh. Bounds on list decoding of rank-metric codes. IEEE Transactions on Information Theory, 59(11):7268–7277, 2013.
  23. A. Wachter-Zeh and A. Zeh. List and unique error-erasure decoding of interleaved gabidulin codes with interpolation techniques. Designs, Codes and Cryptography, 73(2):547–570, 2014.
  24. C. P. Xing and C. Yuan. A new class of rank-metric codes and their list decoding beyond the unique decoding radius. IEEE Transactions on Information Theory, 64(5):3394–3402, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.