Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient List-decoding of Polynomial Ideal Codes with Optimal List Size (2401.14517v3)

Published 25 Jan 2024 in cs.IT and math.IT

Abstract: In a recent breakthrough [BGM23, GZ23, AGL23], it was shown that randomly punctured Reed-Solomon codes are list decodable with optimal list size with high probability, i.e., they attain the Singleton bound for list decoding [ST20, Rot22, GST22]. We extend this result to the family of polynomial ideal codes, a large class of error-correcting codes which includes several well-studied families of codes such as Reed-Solomon, folded Reed-Solomon, and multiplicity codes. More specifically, similarly to the Reed-Solomon setting, we show that randomly punctured polynomial ideal codes over an exponentially large alphabet exactly achieve the Singleton bound for list-decoding; while such codes over a polynomially large alphabet approximately achieve it. Combining our results with the efficient list-decoding algorithm for a large subclass of polynomial ideal codes of [BHKS21], implies as a corollary that a large subclass of polynomial ideal codes (over random evaluation points) is efficiently list decodable with optimal list size. To the best of our knowledge, this gives the first family of codes that can be efficiently list decoded with optimal list size (for all list sizes), as well as the first family of linear codes of rate $R$ that can be efficiently list decoded up to a radius of $1 -R-\epsilon$ with list size that is polynomial (and even linear) in $1/\epsilon$. Our result applies to natural families of codes with algebraic structure such as folded Reed-Solomon or multiplicity codes (over random evaluation points). Our proof follows the general framework of [BGM23, GZ23, AGL23], but several new ingredients are needed. The main two new ingredients are a polynomial-ideal GM-MDS theorem (extending the algebraic GM-MDS theorem of [YH19, Lov21]), as well as a duality theorem for polynomial ideal codes, both of which may be of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Randomly punctured Reed-Solomon codes achieve list-decoding capacity over linear-sized fields. arXiv Preprint, 2023. https://arxiv.org/abs/2304.09445
  2. Generalized GM-MDS: Polynomial Codes are Higher Order MDS. arXiv Preprint, 2023. https://arxiv.org/abs/2310.12888.
  3. AG codes achieve list decoding capacity over contant-sized fields. arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2310.12898.
  4. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993. https://doi.org/10.1007/BF01275486.
  5. Lower Bounds for Maximally Recoverable Tensor Codes and Higher Order MDS Codes. IEEE Transactions on Information Theory, 68(11):7125–7140, 2022. https://doi.org/10.1109/TIT.2022.3187366
  6. Generic Reed-Solomon Codes Achieve List-Decoding Capacity. STOC 2023, page 1488–1501, New York, NY, USA, 2023. Association for Computing Machinery. https://doi.org/10.1145/3564246.3585128
  7. Ideal-theoretic explanation of capacity-achieving decoding. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 56:1–56:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.56
  8. E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number 4,633,470, 1987.
  9. On the hardness of permanent. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 1563 of Lecture Notes in Computer Science, pages 90–99. Springer, 1999. https://doi.org/10.1007/3-540-49116-3_8.
  10. Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM Journal on Computing, 42(6):2305–2328, 2013. https://doi.org/10.1137/100783704.
  11. A probabilistic remark on algebraic program testing. Inf. Process. Lett., 7(4):193–195, 1978. https://doi.org/10.1016/0020-0190(78)90067-4
  12. Balanced Sparsest generator matrices for MDS codes. In 2013 IEEE International Symposium on Information Theory, pages 1889–1893, 2013. https://doi.org/10.1109/ISIT.2013.6620554
  13. On the existence of MDS codes over small fields with constrained generator matrices. In 2014 IEEE International Symposium on Information Theory, pages 1787–1791, 2014. https://doi.org/10.1109/ISIT.2014.6875141
  14. Paul A. Fuhrmann. A Polynomial Approach to Linear Algebra. Springer New York, NY, 1st edition, 2011. https://doi.org/10.1007/978-1-4419-8734-1
  15. A hard-core predicate for all one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32. ACM, 1989. https://doi.org/10.1145/73007.73010.
  16. Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy. IEEE Transactions on Information Theory, 54(1):135–150, 2008. https://doi.org/10.1109/TIT.2007.911222
  17. Efficient list-decoding with constant alphabet and list sizes. IEEE Trans. Inf. Theory, 68(3):1663–1682, 2022. https://doi.org/10.1109/TIT.2021.3131992.
  18. Chinese remaindering with errors. IEEE Transactions on Information Theory, 46(4):1330–1338, 2000. https://doi.org/10.1109/18.850672.
  19. Lossless dimension expanders via linearized polynomials and subspace designs. In Proceedings of the 33rd Computational Complexity Conference (CCC), volume 102 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.CCC.2018.4.
  20. Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999. https://doi.org/10.1109/18.782097.
  21. Is every matrix similar to a polynomial in a companion matrix? Linear algebra and its applications, 437(7):1611–1627, 2012. https://doi.org/10.1016/j.laa.2012.04.049
  22. Singleton-type bounds for list-decoding and list-recovery, and related results. In IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, June 26 - July 1, 2022, pages 2565–2570. IEEE, 2022. https://doi.org/10.1109/ISIT50566.2022.9834849.
  23. Venkatesan Guruswami. List decoding of error-correcting codes, volume 3282 of Lecture Notes in Computer Science. Springer Berlin, Heidelberg, 2004. https://doi.org/10.1007/b104335
  24. Venkatesan Guruswami. Artin automorphisms, cyclotomic function fields, and folded list-decodable codes. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 23–32. ACM Press, 2009. http://doi.acm.org/10.1145/1536414.1536420.
  25. Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4):20:1–20:34, 2009. https://doi.org/10.1145/1538902.1538904.
  26. Linear-algebraic list decoding for variants of reed–solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013. https://doi.org/10.1109/TIT.2013.2246813
  27. Folded codes from function field towers and improved optimal rate list decoding. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 339–350. ACM, 2012. https://doi.org/10.1145/2213977.2214009.
  28. Optimal rate list decoding of folded algebraic-geometric codes over constant-sized alphabets. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1858–1866. SIAM, 2014.
  29. Optimal rate algebraic list decoding using narrow ray class fields. Journal of Combinatorial Theory, Series A, 129:160–183, 2015.
  30. Optimal Rate List Decoding over Bounded Alphabets Using Algebraic-Geometric Codes. J. ACM, 69(2), January 2022. https://doi.org/10.1145/3506668
  31. Randomly Punctured Reed-Solomon Codes Achieve the List Decoding Capacity over Polynomial-Size Alphabets. arXiv Preprint, 2023. https://arxiv.org/abs/2304.01403
  32. Nathan Jacobson. Lectures in Abstract Algebra: II. Linear Algebra, volume 31. Springer New York, NY, 2013. https://doi.org/10.1007/978-1-4684-7053-6
  33. Irving Kaplansky. Linear Algebra and Geometry: A Second Course. Chelsea Publishing Company, 2nd edition, 1974.
  34. Learning decision trees using the Fourier spectrum. SIAM Journal on Computing, 22(6):1331–1348, 1993. https://doi.org/10.1137/0222080.
  35. Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997. https://doi.org/10.5555/270146
  36. Swastik Kopparty. List-Decoding Multiplicity Codes. Theory of Computing, 11(5):149–182, 2015. 10.4086/toc.2015.v011a005
  37. V.Y. Krachkovsky. Reed-Solomon codes for correcting phased error bursts. IEEE Transactions on Information Theory, 49(11):2975–2984, 2003. https://doi.org/10.1109/TIT.2003.819333
  38. Improved List Decoding of Folded Reed-Solomon and Multiplicity Codes. SIAM Journal on Computing, 52(3):794–840, 2023.
  39. High-Rate Codes with Sublinear-Time Decoding. J. ACM, 61(5), Sep 2014. https://doi.org/10.1145/2629416
  40. Shachar Lovett. Sparse MDS Matrices over Small Fields: A Proof of the GM-MDS Conjecture. SIAM Journal on Computing, 50(4):1248–1262, 2021. https://doi.org/10.1137/20M1323345.
  41. Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of Error-Correcting Codes, volume 16. Elsevier, 1977.
  42. Ore Ö. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I, (7):15, 1922.
  43. W. Wesley Peterson. Encoding and error-correction procedures for the Bose-Chaudhuri codes. IRE Transactions on Information Theory, 6(4):459–470, 1960. https://doi.org/10.1109/TIT.1960.1057586.
  44. Ron M. Roth. Higher-order MDS codes. IEEE Trans. Inf. Theory, 68(12):7798–7816, 2022. https://doi.org/10.1109/TIT.2022.3194521.
  45. Polynomial codes over certain finite fields. SIAM Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. https://doi.org/10.1137/0108018.
  46. Codes for the m𝑚mitalic_m-metric. Problemy Peredachi Informatsii, 33(1):55–63, 1997. English translation in: Problems of Information Transmission, 33(1):45–52, 1997. https://www.mathnet.ru/eng/ppi359
  47. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the Association for Computing Machinery (JACM), 27(4):701–717, 1980. https://doi.org/10.1145/322217.322225
  48. Louis Solomon. Similarity of the companion matrix and its transpose. Linear Algebra and its Applications, 302:555–561, 1999. https://doi.org/10.1016/S0024-3795(99)00210-4
  49. A. Spitzbart. A Generalization of Hermite’s Interpolation Formula. The American Mathematical Monthly, 67(1):42–46, 1960. https://doi.org/10.2307/2308924
  50. Combinatorial List-Decoding of Reed-Solomon Codes beyond the Johnson Radius. STOC 2020, page 538–551, New York, NY, USA, 2020. Association for Computing Machinery. https://doi.org/10.1145/3357713.3384295
  51. Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001. https://doi.org/10.1006/jcss.2000.1730.
  52. Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity, 13(1):180–193, 1997. https://doi.org/10.1006/jcom.1997.0439
  53. Itzhak Tamo. Tighter List-Size Bounds for List-Decoding and Recovery of Folded Reed-Solomon and Multiplicity Codes. arXiv Preprint, 2023. https://arxiv.org/abs/2312.17097.
  54. Yongge Tian. Formulas for calculating the dimensions of the sums and the intersections of a family of linear subspaces with applications. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 60:471–485, 2019. https://doi.org/10.1007/s13366-018-00432-9
  55. Luca Trevisan. List-decoding using the XOR lemma. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science FOCS, pages 126–135, 2003. https://doi.org/10.1109/SFCS.2003.1238187.
  56. Better condensers and new extractors from Parvaresh-Vardy codes. In Proceedings of the 27th Computational Complexity Conference (CCC), pages 309–315. IEEE Computer Society, 2012. https://doi.org/10.1109/CCC.2012.25.
  57. On the similarity transformation between a matrix and its transpose. Pacific Journal of Mathematics, 9(3):893–896, 1959. http://dx.doi.org/10.2140/pjm.1959.9.893
  58. Extractor codes. IEEE Transactions on Information Theory, 50(12):3015–3025, 2004. https://doi.org/10.1109/TIT.2004.838377.
  59. Dominic James Anthony Welsh. Generalized versions of Hall’s theorem. Journal of Combinatorial Theory, Series B, 10(2):95–101, 1971. https://doi.org/10.1016/0095-8956(71)90069-4
  60. Optimum Linear Codes With Support-Constrained Generator Matrices Over Small Fields. IEEE Transactions on Information Theory, 65(12):7868–7875, 2019. https://doi.org/10.1109/TIT.2019.2932663
  61. Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium on symbolic and algebraic manipulation, pages 216–226. Springer, 1979. https://doi.org/10.1007/3-540-09519-5_73
Citations (8)

Summary

We haven't generated a summary for this paper yet.