Papers
Topics
Authors
Recent
2000 character limit reached

Randomly Punctured Reed-Solomon Codes Achieve the List Decoding Capacity over Polynomial-Size Alphabets

Published 3 Apr 2023 in cs.IT, cs.DS, math.CO, and math.IT | (2304.01403v2)

Abstract: This paper shows that, with high probability, randomly punctured Reed-Solomon codes over fields of polynomial size achieve the list decoding capacity. More specifically, we prove that for any $\epsilon>0$ and $R\in (0,1)$, with high probability, randomly punctured Reed-Solomon codes of block length $n$ and rate $R$ are $\left(1-R-\epsilon, O({1}/{\epsilon})\right)$ list decodable over alphabets of size at least $2{\mathrm{poly}(1/\epsilon)}n2$. This extends the recent breakthrough of Brakensiek, Gopi, and Makam (STOC 2023) that randomly punctured Reed-Solomon codes over fields of exponential size attain the generalized Singleton bound of Shangguan and Tamo (STOC 2020).

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.