Hong-Ou-Mandel Comb and Switch using parallel chains of non-identical Micro-Ring Resonators (2401.14491v3)
Abstract: Micro-Ring Resonators (MRRs) allow us to access the Hong-Ou-Mandel (HOM) effect at a variety of tunable parameter combinations along exact analytic solutions. This higher-dimensional space of parameters for which the HOM effect occurs constitutes what is known as a Hong-Ou-Mandel manifold (HOMM). Using a parallel series of non-identical MRRs and changing relative round-trip phase shifts between MRRs allows for the manipulation of the wavelength locations of the HOM effect. Through clever design and fabrication, we can mold the HOMM to place multiple HOM effects, or lack thereof, precisely at desired locations in wavelength. In this paper we discuss how to adjust non-identical MRR parameters to change the resulting HOMM. We also promote example designs that exhibit advantageous HOMM structures, and highlight some of the diverse possibilities that can be accessed with different circuit design. Our main examples are: 1) a wavelength division multiplexer example that matches the HOM effect locations with the already established channels to integrate with a classical communication network and 2) a HOM-based entanglement switch that allows for the rapid switching between 2-photon NOON state outputs and completely separable single photon outputs.
- C. Hong, Z. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).
- E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001).
- P. Senellart, G. Soloman, and A. White, High-performance semiconductor quantum-dot single-photon sources, Nature Nanotechnology 12, 1026 (2017).
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
- A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
- J. P. Dowling, Quantum optical metrology – the lowdown on high-n00n states, Contemporary Physics 49, 125 (2008).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
- L. Chen, N. Sherwood-Droz, and M. Lipson, Compact bandwidth-tunable microring resonators, Opt. Lett. 32, 3361 (2007).
- P. L. Kaulfuss, Using Linear Arrays of Micro-Ring Resonators to Enhance the Hong-Ou-Mandel Effect for Quantum Optical Networks in Silicon Nanophotonics, https://scholarworks.rit.edu/theses/10881 (School of Physics and Astronomy (COS), Rochester Institute of Technology, 2021).
- J. Skaar, J. Escartin, and H. Landro, Quantum mechanical description of linear optics, Am. J. Phys. 72, 1385 (2004).
- D. G. Rabus, Integrated Ring Resonators (Springer-Verlag, Berlin, 2007).
- This was done using an integrated dual-MZI (Mach-Zehnder interferometer) MRR design with an FSR of ∼similar-to\sim∼2.51nm. Telecom laser sweeps were performed using a Keysight mainframe while a Keysight N77xx detector was employed for synchronized detection. Shifts to the round-trip phase initiated through heaters placed on the ring resonator; heating the ring changes the effective index, thereby shifting the resonant wavelengths.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.