Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A polynomial-time dissipation-based quantum algorithm for solving the ground states of a class of classically hard Hamiltonians (2401.13946v8)

Published 25 Jan 2024 in quant-ph

Abstract: In this work, we give a polynomial-time quantum algorithm for solving the ground states of a class of classically hard Hamiltonians. The mechanism of the exponential speedup that appeared in our algorithm comes from dissipation in open quantum systems. To utilize the dissipation, we introduce a new idea of treating vectorized density matrices as pure states, which we call the vectorization picture. By doing so, the Lindblad master equation (LME) becomes a Schr\"odinger equation with non-Hermitian Hamiltonian. The steady state of the LME, therefore, corresponds to the ground states of a special class of Hamiltonians. The runtime of the LME has no dependence on the overlap between the initial state and the ground state. For the input part, given a Hamiltonian, under plausible assumptions, we give a polynomial-time classical procedure to judge and solve whether there exists LME with the desired steady state. For the output part, we propose a novel measurement strategy to extract information about the ground state from the original steady density matrix. We show that the Hamiltonians that can be efficiently solved by our algorithms contain classically hard instances assuming $\text{P}\neq \text{BQP}$. We also discuss possible exponential complexity separations between our algorithm and previous quantum algorithms without using the vectorization picture.

Citations (3)

Summary

We haven't generated a summary for this paper yet.