Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Sharp Bounded-error Quantum Polynomial Time Problem by Evolution methods (2406.03222v2)

Published 5 Jun 2024 in quant-ph

Abstract: Counting ground state degeneracy of a $k$-local Hamiltonian is important in many fields of physics. Its complexity belongs to the problem of sharp bounded-error quantum polynomial time (#BQP) class and few methods are known for its solution. Finding ground states of a $k$-local Hamiltonian, on the other hand, is an easier problem of Quantum Merlin Arthur (QMA) class, for which many efficient methods exist. In this work, we propose an algorithm of mapping a #BQP problem into one of finding a special ground state of a $k$-local Hamiltonian. We prove that all traditional methods, which solve the QMA problem by evolution under a function of a Hamiltonian, can be used to find the special ground state from a well-designed initial state, thus can solve the #BQP problem. We combine our algorithm with power method, Lanczos method, and quantum imaginary time evolution method for different systems to illustrate the detection of phase boundaries, competition between frustration and quantum fluctuation, and potential implementations with quantum circuits.

Summary

We haven't generated a summary for this paper yet.