Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Continuous Variable Based Quantum Communication in the Ocean (2401.13243v1)

Published 24 Jan 2024 in quant-ph

Abstract: Continuous Variable-Based Quantum Cryptography (CV-QKD) is an emerging field in quantum information science, offering unprecedented security for communication protocols by harnessing the principles of quantum mechanics. However, ocean environments pose unique challenges to quantum communication due to their distinct properties and characteristics. This work investigates the impact of turbulence on the transmission of Gaussian light beams used in a continuous variable-based quantum key distribution system for underwater quantum communication. The objective is to quantitatively analyze the induced losses and propose methodologies to mitigate their effects. To achieve this, we adopt the widely accepted ABCD matrix formalism, which provides a comprehensive framework for characterizing the propagation of optical beams through different media. Moreover, a numerical simulation framework is developed to assess the resulting losses and evaluate the performance of the proposed system. The implications of these numerical simulation frameworks for the design and optimization of quantum communication systems for oceanic environments are thoroughly discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” \JournalTitleIEEE communications surveys & tutorials 19, 204–238 (2016).
  2. P. A. Hoeher, J. Sticklus, and A. Harlakin, “Underwater optical wireless communications in swarm robotics: A tutorial,” \JournalTitleIEEE Communications Surveys & Tutorials 23, 2630–2659 (2021).
  3. G. Cossu, A. Sturniolo, A. Messa, D. Scaradozzi, and E. Ciaramella, “Full-fledged 10base-t ethernet underwater optical wireless communication system,” \JournalTitleIEEE Journal on Selected Areas in Communications 36, 194–202 (2017).
  4. C. Bennett and G. i. Brassard, “Proc. ieee int. conf. on computers, systems and signal processing, bangalore, india,” in Proc. of the IEEE Int. Conf. on Computers Systems and Signal Processing Bangalore India, (1984), p. 175.
  5. P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” \JournalTitlePhysical review letters 85, 441 (2000).
  6. D. Mayers, “Unconditional security in quantum cryptography,” \JournalTitleJournal of the ACM (JACM) 48, 351–406 (2001).
  7. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” \JournalTitlePhysical review letters 88, 057902 (2002).
  8. S. Srikara, K. Thapliyal, and A. Pathak, “Continuous variable b92 quantum key distribution protocol using single photon added and subtracted coherent states,” \JournalTitleQuantum Information Processing 19, 1–16 (2020).
  9. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., “Advances in quantum cryptography,” \JournalTitleAdvances in optics and photonics 12, 1012–1236 (2020).
  10. T. C. Ralph, “Continuous variable quantum cryptography,” \JournalTitlePhysical Review A 61, 010303 (1999).
  11. E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” \JournalTitleEntropy 17, 6072–6092 (2015).
  12. F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-variable quantum key distribution with gaussian modulation—the theory of practical implementations,” \JournalTitleAdvanced Quantum Technologies 1, 1800011 (2018).
  13. M. Ghalaii and S. Pirandola, “Quantum communications in a moderate-to-strong turbulent space,” \JournalTitleCommunications Physics 5, 38 (2022).
  14. B. Heim, C. Peuntinger, N. Killoran, I. Khan, C. Wittmann, C. Marquardt, and G. Leuchs, “Atmospheric continuous-variable quantum communication,” \JournalTitleNew Journal of Physics 16, 113018 (2014).
  15. V. Sharma and S. Banerjee, “Analysis of atmospheric effects on satellite-based quantum communication: a comparative study,” \JournalTitleQuantum Information Processing 18, 1–24 (2019).
  16. V. Sharma and S. Banerjee, “Analysis of quantum key distribution based satellite communication,” in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), (IEEE, 2018), pp. 1–5.
  17. Muskan, R. Meena, and S. Banerjee, “Analysing qber and secure key rate under various losses for satellite based free space qkd,” \JournalTitlearXiv preprint arXiv:2308.01036 (2023).
  18. G. Giuliano, “Underwater optical communication systems,” Ph.D. thesis, University of Glasgow (2019).
  19. C. M. Gussen, P. S. Diniz, M. L. Campos, W. A. Martins, F. M. Costa, and J. N. Gois, “A survey of underwater wireless communication technologies,” \JournalTitleJ. Commun. Inf. Sys 31, 242–255 (2016).
  20. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue gan-based micro-led,” \JournalTitleOptics express 25, 1193–1201 (2017).
  21. J. Wang, C. Lu, S. Li, and Z. Xu, “100 m/500 mbps underwater optical wireless communication using an nrz-ook modulated 520 nm laser diode,” \JournalTitleOptics Express 27, 12171–12181 (2019).
  22. L. Zhang, Z. Wang, Z. Wei, C. Chen, G. Wei, H. Fu, and Y. Dong, “Towards a 20 gbps multi-user bubble turbulent noma uowc system with green and blue polarization multiplexing,” \JournalTitleOptics Express 28, 31796–31807 (2020).
  23. Y. Dai, X. Chen, X. Yang, Z. Tong, Z. Du, W. Lyu, C. Zhang, H. Zhang, H. Zou, Y. Cheng et al., “200-m/500-mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit,” \JournalTitleOptics Express 29, 32228–32243 (2021).
  24. C. Fei, Y. Wang, J. Du, R. Chen, N. Lv, G. Zhang, J. Tian, X. Hong, and S. He, “100-m/3-gbps underwater wireless optical transmission using a wideband photomultiplier tube (pmt),” \JournalTitleOptics Express 30, 2326–2337 (2022).
  25. S. Q. Duntley, “Light in the sea,” \JournalTitleJOSA 53, 214–233 (1963).
  26. G. Gilbert, T. Stoner, and J. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” in Underwater Photo Optics I, vol. 7 (SPIE, 1966), pp. 8–14.
  27. D. K. Borah and D. G. Voelz, “Estimation of laser beam pointing parameters in the presence of atmospheric turbulence,” \JournalTitleApplied Optics 46, 6010–6018 (2007).
  28. A. Dutta, M. , S. Banerjee, and A. Pathak, “Analysis for satellite-based high-dimensional extended B92 and high-dimensional BB84 quantum key distribution,” \JournalTitlearXiv preprint arXiv:2311.00309 (2023).
  29. J. Coronel, K. Elayoubi, A. Al Ahmadi, S. Al Hosani, A. Al Blooshi, R. Al Ameri, S. Cordette, A. Bouchalkha, J. Alameri, G. Matras et al., “Characterization of infrared laser beam through atmospheric optical turbulence in laboratory environment,” in Free-Space Laser Communications XXXV, vol. 12413 (SPIE, 2023), pp. 455–467.
  30. H. Wu and M. van Iersel, “Experimental study on the effects of oam beams propagating through atmospheric turbulence,” in Laser Communication and Propagation through the Atmosphere and Oceans XII, vol. 12691 (SPIE, 2023), pp. 132–142.
  31. L. C. Andrews and R. L. Phillips, “Laser beam propagation through random media,” \JournalTitleLaser Beam Propagation Through Random Media: Second Edition (2005).
  32. J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-carlo-based optical wireless underwater channel modeling with oceanic turbulence,” \JournalTitleOptics Communications 475, 126214 (2020).
  33. N. Enghiyad and A. G. Sabbagh, “Impulse response of underwater optical wireless channel in the presence of turbulence, absorption, and scattering employing monte carlo simulation,” \JournalTitleJOSA A 39, 115–126 (2022).
  34. C. T. Geldard, J. Thompson, and W. O. Popoola, “Effects of turbulence induced scattering on underwater optical wireless communications,” \JournalTitlearXiv preprint arXiv:2008.01152 (2020).
  35. D. Xu, P. Yue, X. Yi, and J. Liu, “Improvement of a monte-carlo-simulation-based turbulence-induced attenuation model for an underwater wireless optical communications channel,” \JournalTitleJOSA A 39, 1330–1342 (2022).
  36. X. Ji, H. Yin, Y. Liang, J. Wang et al., “Analysis of aperture averaging effect and communication system performance of wireless optical channels with from weak to strong turbulence in natural turbid water,” \JournalTitleOptics Communications 528, 129018 (2023).
  37. W. Hou, S. Woods, E. Jarosz, W. Goode, and A. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” \JournalTitleAppl. Opt. 51, 2678–2686 (2012).
  38. G. Nootz, E. Jarosz, F. R. Dalgleish, and W. Hou, “Quantification of optical turbulence in the ocean and its effects on beam propagation,” \JournalTitleAppl. Opt. 55, 8813–8820 (2016).
  39. X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” \JournalTitleApplied optics 34, 3477–3480 (1995).
  40. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” \JournalTitleBell System Technical Journal 44, 455–494 (1965).
  41. H. Kogelnik, “On the propagation of gaussian beams of light through lenslike media including those with a loss or gain variation,” \JournalTitleAppl. Opt. 4, 1562–1569 (1965).
  42. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” \JournalTitleIEEE Journal on Selected Areas in Communications 26, 1620–1627 (2008).
  43. P. Huang, G. He, J. Fang, and G. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” \JournalTitlePhysical Review A 87, 012317 (2013).
  44. P. Malpani, N. Alam, K. Thapliyal, A. Pathak, V. Narayanan, and S. Banerjee, “Lower-and higher-order nonclassical properties of photon added and subtracted displaced fock states,” \JournalTitleAnnalen der Physik 531, 1800318 (2019).
  45. R. Meena and S. Banerjee, “Characterization of quantumness of non-gaussian states under the influence of gaussian channel,” \JournalTitleQuantum Information Processing 22, 298 (2023).
  46. P. Malpani, K. Thapliyal, N. Alam, A. Pathak, V. Narayanan, and S. Banerjee, “Impact of photon addition and subtraction on nonclassical and phase properties of a displaced fock state,” \JournalTitleOptics Communications 459, 124964 (2020).
  47. Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” \JournalTitlePhysical Review A 93, 012310 (2016).
  48. Y. Xiang, Y. Wang, X. Ruan, Z. Zuo, and Y. Guo, “Improving the discretely modulated underwater continuous-variable quantum key distribution with heralded hybrid linear amplifier,” \JournalTitlePhysica Scripta 96, 065103 (2021).
  49. G. T. McNeil, “Metrical fundamentals of underwater lens system,” \JournalTitleOptical Engineering 16, 128–139 (1977).
  50. D. J. Griffiths, “Introduction to electrodynamics,” (2005).
  51. A. Leverrier and P. Grangier, “Continuous-variable quantum-key-distribution protocols with a non-gaussian modulation,” \JournalTitlePhysical Review A 83, 042312 (2011).
  52. M. Navascués, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” \JournalTitlePhysical review letters 97, 190502 (2006).
  53. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” \JournalTitlePhysical review letters 96, 080502 (2006).
  54. L. J. Johnson, R. J. Green, and M. S. Leeson, “Underwater optical wireless communications: depth dependent variations in attenuation,” \JournalTitleAppl. Opt. 52, 7867–7873 (2013).
  55. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” \JournalTitleJournal of Geophysical Research: Oceans 111 (2006).
  56. Hooker and B. Stanford, ‘‘Seawifs technical report series: An overview of seawifs and ocean color,” \JournalTitleNASA Technical Memorandum I (1992).
  57. T. Kameda and S. Matsumura, “Chlorophyll biomass off sanriku, northwestern pacific, estimated by ocean color and temperature scanner (octs) and a vertical distribution model,” \JournalTitleJournal of Oceanography 54, 509–516 (1998).
  58. C. Pontbriand, N. Farr, J. Ware, J. Preisig, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in OCEANS 2008, (IEEE, 2008), pp. 1–4.
  59. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” \JournalTitleJournal of Geophysical Research: Oceans 100, 13321–13332 (1995).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.