Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology-aware Embedding Memory for Continual Learning on Expanding Networks (2401.13200v3)

Published 24 Jan 2024 in cs.LG

Abstract: Memory replay based techniques have shown great success for continual learning with incrementally accumulated Euclidean data. Directly applying them to continually expanding networks, however, leads to the potential memory explosion problem due to the need to buffer representative nodes and their associated topological neighborhood structures. To this end, we systematically analyze the key challenges in the memory explosion problem, and present a general framework, \textit{i.e.}, Parameter Decoupled Graph Neural Networks (PDGNNs) with Topology-aware Embedding Memory (TEM), to tackle this issue. The proposed framework not only reduces the memory space complexity from $\mathcal{O}(ndL)$ to $\mathcal{O}(n)$~\footnote{$n$: memory budget, $d$: average node degree, $L$: the radius of the GNN receptive field}, but also fully utilizes the topological information for memory replay. Specifically, PDGNNs decouple trainable parameters from the computation ego-subnetwork via \textit{Topology-aware Embeddings} (TEs), which compress ego-subnetworks into compact vectors (\textit{i.e.}, TEs) to reduce the memory consumption. Based on this framework, we discover a unique \textit{pseudo-training effect} in continual learning on expanding networks and this effect motivates us to develop a novel \textit{coverage maximization sampling} strategy that can enhance the performance with a tight memory budget. Thorough empirical studies demonstrate that, by tackling the memory explosion problem and incorporating topological information into memory replay, PDGNNs with TEM significantly outperform state-of-the-art techniques, especially in the challenging class-incremental setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets