Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class-Incremental Learning Using Generative Experience Replay Based on Time-aware Regularization (2310.03898v1)

Published 5 Oct 2023 in cs.LG

Abstract: Learning new tasks accumulatively without forgetting remains a critical challenge in continual learning. Generative experience replay addresses this challenge by synthesizing pseudo-data points for past learned tasks and later replaying them for concurrent training along with the new tasks' data. Generative replay is the best strategy for continual learning under a strict class-incremental setting when certain constraints need to be met: (i) constant model size, (ii) no pre-training dataset, and (iii) no memory buffer for storing past tasks' data. Inspired by the biological nervous system mechanisms, we introduce a time-aware regularization method to dynamically fine-tune the three training objective terms used for generative replay: supervised learning, latent regularization, and data reconstruction. Experimental results on major benchmarks indicate that our method pushes the limit of brain-inspired continual learners under such strict settings, improves memory retention, and increases the average performance over continually arriving tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zizhao Hu (10 papers)
  2. Mohammad Rostami (64 papers)
Citations (3)