Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Beyond the far side: Observing black hole mergers beyond the pair-instability mass gap with next-generation gravitational wave detectors (2401.13038v1)

Published 23 Jan 2024 in astro-ph.HE and gr-qc

Abstract: Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around ${m_\text{min}} \sim130M_\odot$, using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the "far side" beyond the gap, metal-poor environments containing Population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to $\Delta {m_\text{min}}/{m_\text{min}} \simeq 4\% (N_\text{det}/100 ){-1/2}$ at 90% C.L., where $N_\text{det} $ is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  2. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  3. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  4. W. A. Fowler and F. Hoyle, ApJS 9, 201 (1964).
  5. S. E. Woosley and A. Heger, Astrophys. J. Lett. 912, L31 (2021), arXiv:2103.07933 [astro-ph.SR] .
  6. G. Rakavy and G. Shaviv, ApJ 148, 803 (1967).
  7. A. Heger and S. E. Woosley, Astrophys. J. 567, 532 (2002), arXiv:astro-ph/0107037 .
  8. K. Belczynski et al., Astron. Astrophys. 594, A97 (2016), arXiv:1607.03116 [astro-ph.HE] .
  9. R. J. deBoer et al., Rev. Mod. Phys. 89, 035007 (2017), arXiv:1709.03144 [nucl-ex] .
  10. S. E. Woosley and A. Heger, ApJ 912, L31 (2021), arXiv:2103.07933 [astro-ph.SR] .
  11. Y. Shen et al., Astrophys. J. 945, 41 (2023).
  12. M. Fishbach and D. E. Holz, Astrophys. J. Lett. 904, L26 (2020), arXiv:2009.05472 [astro-ph.HE] .
  13. A. H. Nitz and C. D. Capano, Astrophys. J. Lett. 907, L9 (2021), arXiv:2010.12558 [astro-ph.HE] .
  14. T. A. Callister and W. M. Farr,   (2023), arXiv:2302.07289 [astro-ph.HE] .
  15. C. Talbot and E. Thrane, Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
  16. K. Belczynski, Astrophys. J. Lett. 905, L15 (2020), arXiv:2009.13526 [astro-ph.HE] .
  17. M. Spera and M. Mapelli, Mon. Not. Roy. Astron. Soc. 470, 4739 (2017), arXiv:1706.06109 [astro-ph.SR] .
  18. V. Bromm and R. B. Larson, Ann. Rev. Astron. Astrophys. 42, 79 (2004), arXiv:astro-ph/0311019 .
  19. J. M. Ezquiaga and D. E. Holz, Astrophys. J. Lett. 909, L23 (2021), arXiv:2006.02211 [astro-ph.HE] .
  20. D. Gerosa and E. Berti, Phys. Rev. D 95, 124046 (2017), arXiv:1703.06223 [gr-qc] .
  21. D. Gerosa and M. Fishbach, Nature Astron. 5, 749 (2021), arXiv:2105.03439 [astro-ph.HE] .
  22. S. Clesse and J. García-Bellido, Phys. Dark Univ. 15, 142 (2017), arXiv:1603.05234 [astro-ph.CO] .
  23. S. Clesse and J. Garcia-Bellido, Phys. Dark Univ. 38, 101111 (2022), arXiv:2007.06481 [astro-ph.CO] .
  24. B. Liu and V. Bromm, MNRAS 506, 5451 (2021), arXiv:2106.02244 [astro-ph.GA] .
  25. L. S. Finn, Phys. Rev. D 46, 5236 (1992), arXiv:gr-qc/9209010 .
  26. L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198 (1993), arXiv:gr-qc/9301003 .
  27. C. Cutler and E. E. Flanagan, Phys. Rev. D 49, 2658 (1994), arXiv:gr-qc/9402014 .
  28. E. Poisson and C. M. Will, Phys. Rev. D 52, 848 (1995), arXiv:gr-qc/9502040 .
  29. P. Ajith and S. Bose, Phys. Rev. D 79, 084032 (2009), arXiv:0901.4936 [gr-qc] .
  30. M. Vallisneri, Phys. Rev. D 77, 042001 (2008), arXiv:gr-qc/0703086 .
  31. S. Borhanian, Class. Quant. Grav. 38, 175014 (2021), arXiv:2010.15202 [gr-qc] .
  32. S. Borhanian and B. S. Sathyaprakash,   (2022), arXiv:2202.11048 [gr-qc] .
  33. M. Branchesi et al., JCAP 07, 068 (2023), arXiv:2303.15923 [gr-qc] .
  34. M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
  35. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  36. S. E. Woosley, ApJ 836, 244 (2017), arXiv:1608.08939 [astro-ph.HE] .
  37. S. Ghodla and J. J. Eldridge,   (2023), arXiv:2312.10400 [astro-ph.HE] .
  38. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 125, 101102 (2020), arXiv:2009.01075 [gr-qc] .
  39. M. Safarzadeh and Z. Haiman, Astrophys. J. Lett. 903, L21 (2020), arXiv:2009.09320 [astro-ph.HE] .
  40. J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
  41. T. P. Robitaille et al. (Astropy), Astron. Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM] .
  42. D. Gerosa and M. Vallisneri, The Journal of Open Source Software 2, 222 (2017).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.