Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Communication with Unreliable Entanglement Assistance (2401.12861v1)

Published 23 Jan 2024 in quant-ph, cs.IT, and math.IT

Abstract: Secure communication is considered with unreliable entanglement assistance, where the adversary may intercept the legitimate receiver's entanglement resource before communication takes place. The communication setting of unreliable assistance, without security aspects, was originally motivated by the extreme photon loss in practical communication systems. The operational principle is to adapt the transmission rate to the availability of entanglement assistance, without resorting to feedback and repetition. Here, we require secrecy as well. An achievable secrecy rate region is derived for general quantum wiretap channels, and a multi-letter secrecy capacity formula for the special class of degraded channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou, “Security and privacy in 6G networks: New areas and new challenges,” Digit. Commun. Netw., vol. 6, no. 3, pp. 281–291, 2020.
  2. V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin, “Security and privacy for 6G: A survey on prospective technologies and challenges,” IEEE Commun. Surv. Tut., vol. 23, no. 4, pp. 2384–2428, 2021.
  3. M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  4. G. P. Fettweis and H. Boche, “6G: The personal tactile internet—and open questions for information theory,” IEEE BITS Inf. Theory Mag., vol. 1, no. 1, pp. 71–82, 2021.
  5. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing.” Theor. Comput. Sci., vol. 560, no. 12, pp. 7–11, 1984.
  6. R. Renner, “Security of quantum key distribution,” Int’l J. Quantum Info., vol. 6, no. 01, pp. 1–127, 2008.
  7. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Reviews Modern Phys., vol. 81, no. 3, p. 1301, 2009.
  8. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., “Advances in quantum cryptography,” Advances Opt. Photon., vol. 12, no. 4, pp. 1012–1236, 2020.
  9. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nature Photon., vol. 7, no. 5, pp. 378–381, 2013.
  10. S. Wang, Z.-Q. Yin, W. Chen, D.-Y. He, X.-T. Song, H.-W. Li, L.-J. Zhang, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Experimental demonstration of a quantum key distribution without signal disturbance monitoring,” Nature Photon., vol. 9, no. 12, pp. 832–836, 2015.
  11. C. J. Pugh, S. Kaiser, J.-P. Bourgoin, J. Jin, N. Sultana, S. Agne, E. Anisimova, V. Makarov, E. Choi, B. L. Higgins et al., “Airborne demonstration of a quantum key distribution receiver payload,” Quantum Sci. Technol., vol. 2, no. 2, p. 024009, 2017.
  12. H. Liu, W. Wang, K. Wei, X.-T. Fang, L. Li, N.-L. Liu, H. Liang, S.-J. Zhang, W. Zhang, H. Li et al., “Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels,” Physical Rev. Lett., vol. 122, no. 16, p. 160501, 2019.
  13. J. Qiu et al., “Quantum communications leap out of the lab.” Nat., vol. 508, no. 7497, pp. 441–442, 2014.
  14. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf., vol. 2, no. 1, pp. 1–12, 2016.
  15. Y. Liang, L. Lai, H. V. Poor, and S. Shamai, “A broadcast approach for fading wiretap channels,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 842–858, 2013.
  16. R. F. Schaefer, H. Boche, and H. V. Poor, “Secure communication under channel uncertainty and adversarial attacks,” Proc. IEEE, vol. 103, no. 10, pp. 1796–1813, 2015.
  17. A. Wyner, “The wire-tap channel,” Bell Syst. Tech. J, vol. 54(8), pp. 1355–1387, 1975.
  18. J. Yin, Y. H. Li, S. K. Liao, M. Yang, Y. Cao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, and S. L. Li, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020.
  19. U. Pereg, C. Deppe, and H. Boche, “Quantum channel state masking,” IEEE Trans. Inf. Theory, vol. 67, no. 4, pp. 2245–2268, 2021.
  20. E. Zlotnick, B. Bash, and U. Pereg, “Entanglement-assisted covert communication via qubit depolarizing channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2023), 2023, pp. 198–203.
  21. M.-H. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of quantum multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3078–3090, 2008.
  22. F. Dupuis, P. Hayden, and K. Li, “A father protocol for quantum broadcast channels,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2946–2956, June 2010.
  23. U. Pereg, C. Deppe, and H. Boche, “The multiple-access channel with entangled transmitters,” arXiv:2303.10456 [quant-ph]. Submitted to IEEE Trans. Inf. Theory, 2023. [Online]. Available: https://arxiv.org/pdf/2112.09227.pdf
  24. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channels,” Physical Rev. Lett., vol. 83, no. 15, p. 3081, 1999.
  25. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem,” IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, Oct 2002.
  26. H. Qi, K. Sharma, and M. M. Wilde, “Entanglement-assisted private communication over quantum broadcast channels,” J. Phys. A: Math. and Theo., vol. 51, no. 37, p. 374001, 2018.
  27. J. Nötzel and S. DiAdamo, “Entanglement-enhanced communication networks,” in 2020 IEEE Int. Conf. Quantum Comput. Eng. (QCE).   IEEE, 2020, pp. 242–248.
  28. S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, “Entanglement-assisted communication surpassing the ultimate classical capacity,” Phys. Rev. Lett., vol. 126, no. 25, p. 250501, 2021.
  29. G. S. Jaeger and . V. Sergienko, “Entanglement sudden death: a threat to advanced quantum key distribution?” Natural Comput., vol. 13, no. 4, pp. 459–467, 2014.
  30. E. T. Campbell and S. C. Benjamin, “Measurement-based entanglement under conditions of extreme photon loss,” Physical Rev. Lett., vol. 101, no. 13, p. 130502, 2008.
  31. J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, and H. Dai, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett., vol. 119, no. 20, p. 200501, 2017.
  32. A. Czerwinski and K. Czerwinska, “Statistical analysis of the photon loss in fiber-optic communication,” Photon., vol. 9, no. 8, p. 568, 2022.
  33. M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Physical Rev.A, vol. 94, no. 1, p. 012311, 2016.
  34. P. van Loock, W. Alt, C. Becher, O. Benson, H. Boche, C. Deppe, J. Eschner, S. Höfling, D. Meschede, P. Michler et al., “Extending quantum links: modules for fiber-and memory-based quantum repeaters,” Adv. Quantum Technol., vol. 3, no. 11, p. 1900141, 2020.
  35. G. Fettweis and H. Boche, “On 6G and trustworthiness,” Commun. ACM, vol. 65, no. 4, pp. 48–49, 2022.
  36. U. Pereg, C. Deppe, and H. Boche, “Communication with unreliable entanglement assistance,” IEEE Trans. Inf. Theory, 2023.
  37. U. Pereg, “Communication over entanglement-breaking channels with unreliable entanglement assistance,” Phys. Rev. A, vol. 108, p. 042616, Oct 2023.
  38. Y. Steinberg, “Channels with cooperation links that may be absent,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2014), 2014, pp. 1947–1951.
  39. W. Huleihel and Y. Steinberg, “Channels with cooperation links that may be absent,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5886–5906, 2017.
  40. ——, “Multiple access channel with unreliable cribbing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2016), 2016, pp. 1491–1495.
  41. D. Itzhak and Y. Steinberg, “The broadcast channel with degraded message sets and unreliable conference,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 5623–5650, 2021.
  42. ——, “The broadcast channel with degraded message sets and unreliable conference,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2017), 2017, pp. 1043–1047.
  43. U. Pereg and Y. Steinberg, “Arbitrarily varying broadcast channel with uncertain cooperation,” in Proc. Int’l Zurich Semin. Inf. Commun. (IZS’2020).   ETH Zurich, 2020, pp. 63–67.
  44. N. Datta and M.-H. Hsieh, “Universal coding for transmission of private information,” J. Math. Phys., vol. 51, no. 12, 2010.
  45. G. Smith, “Private classical capacity with a symmetric side channel and its application to quantum cryptography,” Physical Rev. A, vol. 78, no. 2, p. 022306, 2008.
  46. F. Dupuis, J. Florjanczyk, P. Hayden, and D. Leung, “The locking-decoding frontier for generic dynamics,” Proc. Roy. Soc. A: Math., Physical, Eng. Sci., vol. 469, no. 2159, p. 20130289, 2013.
  47. S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J. H. Shapiro, M. Takeoka, and M. M. Wilde, “Quantum enigma machines and the locking capacity of a quantum channel,” Physical Rev. X, vol. 4, no. 1, p. 011016, 2014.
  48. O. Fawzi, P. Hayden, and P. Sen, “From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking,” J. ACM (JACM), vol. 60, no. 6, pp. 1–61, 2013.
  49. H. Boche, M. Cai, C. Deppe, and J. Nötzel, “Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks,” J. Math. Phys., vol. 58, no. 10, 2017.
  50. A. Tikku, M. Berta, and J. M. Renes, “Non-additivity in classical-quantum wiretap channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 526–535, 2020.
  51. A. Anshu, M. Hayashi, and N. A. Warsi, “Secure communication over fully quantum gel’fand-pinsker wiretap channel,” IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5548–5566, 2020.
  52. M. Wiese and H. Boche, “Mosaics of combinatorial designs for information-theoretic security,” Des., Codes. Cryptography, vol. 90, no. 3, pp. 593–632, 2022.
  53. H. Boche, M. Cai, and M. Wiese, “Mosaics of combinatorial designs for semantic security on quantum wiretap channels,” in IEEE Int. Symp. Inf. Theory.   IEEE, 2022, pp. 856–861.
  54. N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum wiretap channels,” Prob. Inform. Transm., vol. 40, pp. 318–336, 2004.
  55. I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55, 2005.
  56. I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. in Math. Phys., vol. 256, no. 2, pp. 287–303, June 2005.
  57. S. Zou, Y. Liang, L. Lai, H. V. Poor, and S. Shamai, “Broadcast networks with layered decoding and layered secrecy: Theory and applications,” Proc. IEEE, vol. 103, no. 10, pp. 1841–1856, 2015.
  58. U. Pereg, R. Ferrara, and M. R. Bloch, “Key assistance, key agreement, and layered secrecy for bosonic broadcast channels,” in 2021 IEEE Inf. Theory Workshop.   IEEE, 2021, pp. 1–6.
  59. S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon., vol. 4, no. 8, pp. 553–556, 2010.
  60. Q. Zhuang, E. Y. Zhu, and P. W. Shor, “Additive classical capacity of quantum channels assisted by noisy entanglement,” Phys. Rev. Lett., vol. 118, no. 20, p. 200503, 2017.
  61. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, Jan 1998.
  62. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A, vol. 56, no. 1, p. 131, July 1997.
  63. C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett., vol. 83, no. 15, p. 3081, Oct 1999.
  64. D. Elkouss and S. Strelchuk, “Superadditivity of private information for any number of uses of the channel,” Phys. Rev. Lett., vol. 115, no. 4, p. 040501, 2015.
  65. K. Li, A. Winter, X. Zou, and G. Guo, “Private capacity of quantum channels is not additive,” Physical Rev. Lett., vol. 103, no. 12, p. 120501, 2009.
  66. R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 569–579, 2002.
  67. U. Pereg, “Communication over quantum channels with parameter estimation,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 359–383, 2022.
  68. A. Winter, “Coding theorem and strong converse for quantum channels,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2481–2485, Nov 1999.
  69. T. Ogawa and H. Nagaoka, “Making good codes for classical-quantum channel coding via quantum hypothesis testing,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2261–2266, June 2007.
  70. M. Tahmasbi and M. R. Bloch, “Toward undetectable quantum key distribution over bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 585–598, 2020.
  71. M. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of quantum multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3078–3090, July 2008.
  72. R. Alicki and M. Fannes, “Continuity of quantum conditional information,” J. Phys. A: Math. General, vol. 37, no. 5, pp. L55–L57, Jan 2004.
  73. A. Winter, “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints,” Commun. in Math. Phys., vol. 347, no. 1, pp. 291–313, 2016.
  74. J. Yard, P. Hayden, and I. Devetak, “Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3091–3113, July 2008.
  75. T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, Jan 1972.
  76. G. Kramer, “Topics in multi-user information theory,” Found. Trends Commun. Inf. Theory, vol. 4, no. 4–5, pp. 265–444, 2008.
Citations (2)

Summary

We haven't generated a summary for this paper yet.