2000 character limit reached
Semantic Security with Unreliable Entanglement Assistance: Interception and Loss (2404.12880v2)
Published 19 Apr 2024 in quant-ph, cs.IT, and math.IT
Abstract: Semantic security is considered with unreliable entanglement assistance, due to one of two reasons: Interception or loss. We consider two corresponding models. In the first model, Eve may intercept the entanglement resource. In the second model, Eve is passive, and the resource may dissipate to the environment beyond her reach. We derive achievable rates for both models, subject to a maximal error criterion and semantic security. As an example, we consider the amplitude damping channel. Under interception, time division is not necessarily possible, and the boundary of our achievable region is disconnected. In the passive model, our rate region outperforms time division.
- M. Bellare and S. Tessaro, “Polynomial-time, semantically-secure encryption achieving the secrecy capacity (2012),” arXiv preprint arxiv:1201.3160, 2012.
- Z. Goldfeld, P. Cuff, and H. H. Permuter, “Semantic-security capacity for wiretap channels of type ii,” IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 3863–3879, July 2016.
- M. Bellare, S. Tessaro, and A. Vardy, “Semantic security for the wiretap channel,” in Annual Cryptology Conference. Springer, 2012, pp. 294–311.
- H. Boche, M. Cai, and M. Wiese, “Mosaics of combinatorial designs for semantic security on quantum wiretap channels,” in IEEE Int. Symp. Inf. Theory. IEEE, 2022, pp. 856–861.
- M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Physical Review A, vol. 76, no. 1, p. 012329, 2007.
- H. Boche, M. Cai, C. Deppe, R. Ferrara, and M. Wiese, “Semantic security for quantum wiretap channels,” Journal of Mathematical Physics, vol. 63, no. 9, 2022.
- J. Yin, Y. H. Li, S. K. Liao, M. Yang, Y. Cao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, and S. L. Li, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020.
- E. Zlotnick, B. Bash, and U. Pereg, “Entanglement-assisted covert communication via qubit depolarizing channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2023), 2023, pp. 198–203.
- H. Qi, K. Sharma, and M. M. Wilde, “Entanglement-assisted private communication over quantum broadcast channels,” J. Phys. A: Math. Theo., vol. 51, no. 37, p. 374001, 2018.
- J. Nötzel and S. DiAdamo, “Entanglement-enhanced communication networks,” in Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE’2020), 2020, pp. 242–248.
- E. T. Campbell and S. C. Benjamin, “Measurement-based entanglement under conditions of extreme photon loss,” Physical Rev. Lett., vol. 101, no. 13, p. 130502, 2008.
- J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, and H. Dai, “Satellite-to-ground entanglement-based quantum key distribution,” Physical Rev. Lett., vol. 119, no. 20, p. 200501, 2017.
- A. Czerwinski and K. Czerwinska, “Statistical analysis of the photon loss in fiber-optic communication,” Photon., vol. 9, no. 8, p. 568, 2022.
- G. Fettweis and H. Boche, “On 6G and trustworthiness,” Commun. ACM, vol. 65, no. 4, pp. 48–49, 2022.
- U. Pereg, C. Deppe, and H. Boche, “Communication with unreliable entanglement assistance,” IEEE Trans. Inf. Theory, vol. 69, no. 7, pp. 4579–4599, 2023.
- W. Huleihel and Y. Steinberg, “Channels with cooperation links that may be absent,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5886–5906, 2017.
- U. Pereg, “Communication over entanglement-breaking channels with unreliable entanglement assistance,” Physical Rev. A, vol. 108, p. 042616, 2023.
- F. Dupuis, J. Florjanczyk, P. Hayden, and D. Leung, “The locking-decoding frontier for generic dynamics,” Proc. Roy. Soc. A: Math., Physical, Eng. Sci., vol. 469, no. 2159, p. 20130289, 2013.
- O. Fawzi, P. Hayden, and P. Sen, “From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking,” J. ACM (JACM), vol. 60, no. 6, pp. 1–61, 2013.
- H. Boche, M. Cai, C. Deppe, and J. Nötzel, “Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks,” J. Math. Phys., vol. 58, no. 10, 2017.
- N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum wiretap channels,” Prob. Inform. Transm., vol. 40, pp. 318–336, 2004.
- I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55, 2005.
- M. Lederman and U. Pereg, “Secure communication with unreliable entanglement assistance,” arXiv:2401.12861 [quant-ph], 2024. [Online]. Available: https://arxiv.org/pdf/2401.12861.pdf
- H. Boche and J. Nötzel, “Positivity, discontinuity, finite resources, and nonzero error for arbitrarily varying quantum channels,” J. Math. Phys., vol. 55, no. 12, p. 122201, 2014.
- N. Cai, “The maximum error probability criterion, random encoder, and feedback, in multiple input channels,” Entropy, vol. 16, no. 3, pp. 1211–1242, 2014.
- U. Pereg, C. Deppe, and H. Boche, “The multiple-access channel with entangled transmitters,” arXiv:2303.10456 [quant-ph]. Submitted to IEEE Trans. Inf. Theory, 2023.
- S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon., vol. 4, no. 8, pp. 553–556, 2010.
- R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 569–579, 2002.