Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Privacy-, Budget-, and Deadline-Aware Service Optimization for Large Medical Image Processing across Hybrid Clouds (2401.12597v1)

Published 23 Jan 2024 in cs.DC

Abstract: Efficiently processing medical images, such as whole slide images in digital pathology, is essential for timely diagnosing high-risk diseases. However, this demands advanced computing infrastructure, e.g., GPU servers for deep learning inferencing, and local processing is time-consuming and costly. Besides, privacy concerns further complicate the employment of remote cloud infrastructures. While previous research has explored privacy and security-aware workflow scheduling in hybrid clouds for distributed processing, privacy-preserving data splitting, optimizing the service allocation of outsourcing computation on split data to the cloud, and privacy evaluation for large medical images still need to be addressed. This study focuses on tailoring a virtual infrastructure within a hybrid cloud environment and scheduling the image processing services while preserving privacy. We aim to minimize the use of untrusted nodes, lower monetary costs, and reduce execution time under privacy, budget, and deadline requirements. We consider a two-phase solution and develop 1) a privacy-preserving data splitting algorithm and 2) a greedy Pareto front-based algorithm for optimizing the service allocation. We conducted experiments with real and simulated data to validate and compare our method with a baseline. The results show that our privacy mechanism design outperforms the baseline regarding the average lower band on individual privacy and information gain for privacy evaluation. In addition, our approach can obtain various Pareto optimal-based allocations with users' preferences on the maximum number of untrusted nodes, budget, and time threshold. Our solutions often dominate the baseline's solution and are superior on a tight budget. Specifically, our approach has been ahead of baseline, up to 85.2% and 6.8% in terms of the total financial and time costs, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. N. Kanwal, F. Pérez-Bueno, A. Schmidt, R. Molina, and K. Engan, “The devil is in the details: Whole slide image acquisition and processing for artifacts detection, color variation, and data augmentation. a review.” IEEE Access, 2022.
  2. N. Kanwal, T. Eftestøl, F. Khoraminia, T. C. Zuiverloon, and K. Engan, “Vision transformers for small histological datasets learned through knowledge distillation,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.   Springer, 2023, pp. 167–179.
  3. T. Kurc, X. Qi, D. Wang, F. Wang, G. Teodoro, L. Cooper, M. Nalisnik, L. Yang, J. Saltz, and D. J. Foran, “Scalable analysis of big pathology image data cohorts using efficient methods and high-performance computing strategies,” BMC bioinformatics, vol. 16, no. 1, pp. 1–21, 2015.
  4. J. Domingo-Ferrer, O. Farras, J. Ribes-González, and D. Sánchez, “Privacy-preserving cloud computing on sensitive data: A survey of methods, products and challenges,” Computer Communications, vol. 140, pp. 38–60, 2019.
  5. N. Truong, K. Sun, S. Wang, F. Guitton, and Y. Guo, “Privacy preservation in federated learning: An insightful survey from the gdpr perspective,” Computers & Security, vol. 110, p. 102402, 2021.
  6. Y. Wang, N. Kanwal, K. Engan, C. Rong, and Z. Zhao, “Towards a privacy-preserving distributed cloud service for preprocessing very large medical images,” in 2023 IEEE International Conference on Digital Health (ICDH).   IEEE, 2023, pp. 325–327.
  7. O. Mazhelis and P. Tyrväinen, “Economic aspects of hybrid cloud infrastructure: User organization perspective,” Information Systems Frontiers, vol. 14, pp. 845–869, 2012.
  8. J. Weinman, “Hybrid cloud economics,” IEEE Cloud Computing, vol. 3, no. 1, pp. 18–22, 2016.
  9. G. Aryotejo, D. Y. Kristiyanto et al., “Hybrid cloud: bridging of private and public cloud computing,” in Journal of Physics: Conference Series, vol. 1025, no. 1.   IOP Publishing, 2018, p. 012091.
  10. Y. Wen, J. Liu, W. Dou, X. Xu, B. Cao, and J. Chen, “Scheduling workflows with privacy protection constraints for big data applications on cloud,” Future Generation Computer Systems, vol. 108, pp. 1084–1091, 2020.
  11. S. Sharif, P. Watson, J. Taheri, S. Nepal, and A. Y. Zomaya, “Privacy-aware scheduling saas in high performance computing environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1176–1188, 2016.
  12. A. C. Zhou, Y. Xiao, Y. Gong, B. He, J. Zhai, and R. Mao, “Privacy regulation aware process mapping in geo-distributed cloud data centers,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp. 1872–1888, 2019.
  13. J. Lei, Q. Wu, and J. Xu, “Privacy and security-aware workflow scheduling in a hybrid cloud,” Future Generation Computer Systems, vol. 131, pp. 269–278, 2022.
  14. B. Singh, A. Singh, and D. Singh, “A Survey of Cryptographic and Non-cryptographic Techniques for Privacy Preservation,” International Journal of Computer Applications, vol. 130, no. 13, pp. 7–10, 2015.
  15. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  16. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.
  17. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.
  18. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proceedings of the 13th ACM conference on Computer and communications security, 2006, pp. 89–98.
  19. R. Zhang, R. Xue, and L. Liu, “Searchable encryption for healthcare clouds: A survey,” IEEE Transactions on Services Computing, vol. 11, no. 6, pp. 978–996, 2017.
  20. J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy for cloud-based iot: Challenges,” IEEE Communications Magazine, vol. 55, no. 1, pp. 26–33, 2017.
  21. M. A. P. Chamikara, P. Bertok, I. Khalil, D. Liu, and S. Camtepe, “Privacy preserving distributed machine learning with federated learning,” Computer Communications, vol. 171, pp. 112–125, 2021.
  22. Q. Li, J. S. Gundersen, R. Heusdens, and M. G. Christensen, “Privacy-preserving distributed processing: metrics, bounds and algorithms,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2090–2103, 2021.
  23. S. Vadhan, “The complexity of differential privacy,” Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich, pp. 347–450, 2017.
  24. E. Boyle, A. Jain, M. Prabhakaran, and C.-H. Yu, “The bottleneck complexity of secure multiparty computation,” in 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).   Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
  25. D. Chakarov and Y. Papazov, “Evaluation of the complexity of fully homomorphic encryption schemes in implementations of programs,” in Proceedings of the 20th International Conference on Computer Systems and Technologies, 2019, pp. 62–67.
  26. W. Jung, E. Lee, S. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon, and J. H. Ahn, “Accelerating fully homomorphic encryption through microarchitecture-aware analysis and optimization,” in 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).   IEEE, 2021, pp. 237–239.
  27. R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.
  28. T. Neubauer and J. Heurix, “A methodology for the pseudonymization of medical data,” International journal of medical informatics, vol. 80, no. 3, pp. 190–204, 2011.
  29. R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in 21st International conference on data engineering (ICDE’05).   IEEE, 2005, pp. 217–228.
  30. O. Farràs, J. Ribes-González, and S. Ricci, “Privacy-preserving data splitting: a combinatorial approach,” Designs, Codes and Cryptography, vol. 89, no. 7, pp. 1735–1756, 2021.
  31. G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure, privacy-preserving and federated machine learning in medical imaging,” Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.
  32. S. Vijayarani and A. Tamilarasi, “An efficient masking technique for sensitive data protection,” in 2011 International Conference on Recent Trends in Information Technology (ICRTIT).   IEEE, 2011, pp. 1245–1249.
  33. R. Brand, “Microdata protection through noise addition,” Inference Control in Statistical Databases: From Theory to Practice, pp. 97–116, 2002.
  34. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “Random-data perturbation techniques and privacy-preserving data mining,” Knowledge and Information Systems, vol. 7, pp. 387–414, 2005.
  35. M. Rodriguez-Garcia, M. Batet, and D. Sánchez, “Utility-preserving privacy protection of nominal data sets via semantic rank swapping,” Information Fusion, vol. 45, pp. 282–295, 2019.
  36. K. Muralidhar and R. Sarathy, “Data shuffling—a new masking approach for numerical data,” Management Science, vol. 52, no. 5, pp. 658–670, 2006.
  37. J. Domingo-Ferrer and V. Torra, “Ordinal, continuous and heterogeneous k-anonymity through microaggregation,” Data Mining and Knowledge Discovery, vol. 11, pp. 195–212, 2005.
  38. P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression,” 1998.
  39. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.
  40. N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy beyond k-anonymity and l-diversity,” in 2007 IEEE 23rd international conference on data engineering.   IEEE, 2006, pp. 106–115.
  41. S. R. Ganta, S. P. Kasiviswanathan, and A. Smith, “Composition attacks and auxiliary information in data privacy,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, pp. 265–273.
  42. R. C.-W. Wong, A. W.-C. Fu, K. Wang, P. S. Yu, and J. Pei, “Can the utility of anonymized data be used for privacy breaches?” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 5, no. 3, pp. 1–24, 2011.
  43. L. Zhang, S. Jajodia, and A. Brodsky, “Information disclosure under realistic assumptions: Privacy versus optimality,” in Proceedings of the 14th ACM conference on Computer and communications security, 2007, pp. 573–583.
  44. D. Sánchez and M. Batet, “Privacy-preserving data outsourcing in the cloud via semantic data splitting,” Computer Communications, vol. 110, pp. 187–201, 2017.
  45. S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic distributed storage systems against eavesdropping and adversarial attacks,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6734–6753, 2011.
  46. L. Sankar, S. R. Rajagopalan, and H. V. Poor, “Utility-privacy tradeoffs in databases: An information-theoretic approach,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 6, pp. 838–852, 2013.
  47. Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Annual International Cryptology Conference.   Springer, 2000, pp. 36–54.
  48. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  49. J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.
  50. A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.
  51. R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural and multidisciplinary optimization, vol. 26, pp. 369–395, 2004.
  52. S. Brisset and F. Gillon, “Approaches for multi-objective optimization in the ecodesign of electric systems,” Eco-friendly innovation in electricity transmission and distribution networks, pp. 83–97, 2015.
  53. Y. Hu, J. Wang, H. Zhou, P. Martin, A. Taal, C. De Laat, and Z. Zhao, “Deadline-aware deployment for time critical applications in clouds,” in Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, August 28–September 1, 2017, Proceedings 23.   Springer, 2017, pp. 345–357.
  54. A. Kosowski and K. Manuszewski, “Classical coloring of graphs,” Contemporary Mathematics, vol. 352, pp. 1–20, 2004.
  55. Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie, “Multi-objective workflow scheduling with deep-q-network-based multi-agent reinforcement learning,” IEEE access, vol. 7, pp. 39 974–39 982, 2019.
  56. N. Kanwal, S. Fuster, F. Khoraminia, T. C. Zuiverloon, C. Rong, and K. Engan, “Quantifying the effect of color processing on blood and damaged tissue detection in whole slide images,” in 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).   IEEE, 2022, pp. 1–5.
  57. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.

Summary

We haven't generated a summary for this paper yet.