Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Privacy in Cloud Computing through Immersion-based Coding (2403.04485v2)

Published 7 Mar 2024 in cs.CR

Abstract: Cloud computing enables users to process and store data remotely on high-performance computers and servers by sharing data over the Internet. However, transferring data to clouds causes unavoidable privacy concerns. Here, we present a synthesis framework to design coding mechanisms that allow sharing and processing data in a privacy-preserving manner without sacrificing data utility and algorithmic performance. We consider the setup where the user aims to run an algorithm in the cloud using private data. The cloud then returns some data utility back to the user (utility refers to the service that the algorithm provides, e.g., classification, prediction, AI models, etc.). To avoid privacy concerns, the proposed scheme provides tools to co-design: 1) coding mechanisms to distort the original data and guarantee a prescribed differential privacy level; 2) an equivalent-but-different algorithm (referred here to as the target algorithm) that runs on distorted data and produces distorted utility; and 3) a decoding function that extracts the true utility from the distorted one with a negligible error. Then, instead of sharing the original data and algorithm with the cloud, only the distorted data and target algorithm are disclosed, thereby avoiding privacy concerns. The proposed scheme is built on the synergy of differential privacy and system immersion tools from control theory. The key underlying idea is to design a higher-dimensional target algorithm that embeds all trajectories of the original algorithm and works on randomly encoded data to produce randomly encoded utility. We show that the proposed scheme can be designed to offer any level of differential privacy without degrading the algorithm's utility. We present two use cases to illustrate the performance of the developed tools: privacy in optimization/learning algorithms and a nonlinear networked control system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor, “Smart meter privacy: A utility-privacy framework,” in Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), 2011, pp. 190–195.
  2. O. Tan, D. Gündüz, and H. V. Poor, “Increasing smart meter privacy through energy harvesting and storage devices,” IEEE Journal on Selected Areas in Communications, vol. 31, pp. 1331–1341, 2013.
  3. Z. Huang, Y. Wang, S. Mitra, and G. E. Dullerud, “On the cost of differential privacy in distributed control systems,” in Proceedings of the 3rd International Conference on High Confidence Networked Systems, 2014, pp. 105–114.
  4. and M. Gruteser, , and A. Alrabady, “Enhancing security and privacy in traffic-monitoring systems,” IEEE Pervasive Computing, vol. 5, pp. 38–46, 2006.
  5. R. H. Weber, “Internet of things - new security and privacy challenges,” Computer Law and Security Review, vol. 26, pp. 23–30, 2010.
  6. Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE communications surveys & tutorials, vol. 15, no. 2, pp. 843–859, 2012.
  7. J. L. Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, vol. 59, pp. 341–354, 2014.
  8. T. Tanaka, M. Skoglund, H. Sandberg, and K. H. Johansson, “Directed information as privacy measure in cloud-based control,” arXiv preprint arXiv:1705.02802, 2017.
  9. C. Murguia, I. Shames, F. Farokhi, and D. Nešić, “On privacy of quantized sensor measurements through additive noise,” in Proceedings of the 57th IEEE Conference on Decision and Control (CDC), 2018.
  10. N. Wang, W. Zhou, J. Wang, Y. Guo, J. Fu, and J. Liu, “Secure and efficient similarity retrieval in cloud computing based on homomorphic encryption,” IEEE Transactions on Information Forensics and Security, 2024.
  11. M. S. Prakash and N. Monshizadeh, “Privacy-preserving cloud computation of algebraic riccati equations,” IEEE Control Systems Letters, 2024.
  12. F. Farokhi and H. Sandberg, “Optimal privacy-preserving policy using constrained additive noise to minimize the fisher information,” in Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC), 2017.
  13. C. Murguia, I. Shames, F. Farokhi, D. Nešić, and H. V. Poor, “On privacy of dynamical systems: An optimal probabilistic mapping approach,” IEEE Transactions on Information Forensics and Security, 2021.
  14. H. Hayati, C. Murguia, and N. Van De Wouw, “Finite horizon privacy of stochastic dynamical systems: A synthesis framework for gaussian mechanisms,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 5607–5613.
  15. H. Hayati, N. van de Wouw, and C. Murguia, “Infinite horizon privacy in networked control systems: Utility/privacy tradeoffs and design tools,” in 2023 62nd IEEE Conference on Decision and Control (CDC), 2023, pp. 1847–1852.
  16. C. Dwork, “Differential privacy: A survey of results,” in Theory and Applications of Models of Computation.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–19.
  17. J. Wan, A. Lopez, and M. A. A. Faruque, “Physical layer key generation: Securing wireless communication in automotive cyber-physical systems,” ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2, pp. 1–26, 2018.
  18. Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Srivastava, and P. Tabuada, “Privacy-aware quadratic optimization using partially homomorphic encryption,” in Proceedings of the IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 5053–5058.
  19. B. Joshi, B. Joshi, A. Mishra, V. Arya, A. K. Gupta, and D. Peraković, “A comparative study of privacy-preserving homomorphic encryption techniques in cloud computing,” International Journal of Cloud Applications and Computing (IJCAC), vol. 12, no. 1, pp. 1–11, 2022.
  20. P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in International conference on the theory and applications of cryptographic techniques.   Springer, 1999, pp. 223–238.
  21. C. Murguia, F. Farokhi, and I. Shames, “Secure and private implementation of dynamic controllers using semihomomorphic encryption,” IEEE Transactions on Automatic Control, vol. 65, no. 9, pp. 3950–3957, 2020.
  22. J. Kim, D. Kim, Y. Song, H. Shim, H. Sandberg, and K. H. Johansson, “Comparison of encrypted control approaches and tutorial on dynamic systems using lwe-based homomorphic encryption,” arXiv preprint arXiv:2210.05560, 2022.
  23. A. Astolfi and R. Ortega, “Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems,” IEEE Transactions on Automatic control, vol. 48, no. 4, pp. 590–606, 2003.
  24. H. Hayati, C. Murguia, and N. van de Wouw, “Privacy-preserving federated learning via system immersion and random matrix encryption,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 6776–6781.
  25. H. Hayati, S. Heijmans, L. Persoon, C. Murguia, and N. van de Wouw, “Mo-0304 privacy-preserving federated learning for radiotherapy applications,” Radiotherapy and Oncology, vol. 182, pp. S238–S240, 2023.
  26. H. Hayati, N. van de Wouw, and C. Murguia, “Immersion and invariance-based coding for privacy in remote anomaly detection,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 191–11 196, 2023.
  27. A. Isidori and C. Byrnes, “Output regulation of nonlinear systems,” IEEE Transactions on Automatic control, vol. 35, no. 2, pp. 131–140, 1990.
  28. F. Delli Priscoli, C. Byrnes, and A. Isidori, “Output regulation of uncertain nonlinear systems,” 1997.
  29. N. Schlüter, P. Binfet, and M. S. Darup, “Cryptanalysis of random affine transformations for encrypted control,” arXiv preprint arXiv:2304.06582, 2023.
  30. J. Upadhyay, “Random projections, graph sparsification, and differential privacy,” in International Conference on the Theory and Application of Cryptology and Information Security.   Springer, 2013, pp. 276–295.
  31. C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations and Trends in Theoretical Computer Science, vol. 9, pp. 211–407, 2014.
  32. W. Diffie and M. E. Hellman, “New directions in cryptography,” in Secure communications and asymmetric cryptosystems.   Routledge, 2019, pp. 143–180.
  33. C. E. Shannon, “Communication theory of secrecy systems,” The Bell system technical journal, vol. 28, no. 4, pp. 656–715, 1949.
  34. C. Wang and S. Ju, “Book cipher with infinite key space,” in 2008 International Symposium on Information Science and Engineering, vol. 1.   IEEE, 2008, pp. 456–459.
  35. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Differential privacy—a primer for the perplexed,”,” Joint UNECE/Eurostat work session on statistical data confidentiality, vol. 11, 2011.
  36. B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der Maaten, “Crypten: Secure multi-party computation meets machine learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 4961–4973, 2021.
  37. Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep learning via additively homomorphic encryption,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.
  38. K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.
  39. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.
  40. J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for multilayer perceptron,” IEEE transactions on neural networks and learning systems, vol. 27, no. 4, pp. 809–821, 2015.
  41. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  42. X. Jia, X. Chen, S. Xu, B. Zhang, and Z. Zhang, “Adaptive output feedback control of nonlinear time-delay systems with application to chemical reactor systems,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4792–4799, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com