Geometric phase for a nonstatic coherent light-wave: nonlinear evolution harmonized with the dynamical phase (2401.12560v2)
Abstract: Properties of the geometric phase for a nonstatic coherent light-wave arisen in a static environment are analyzed from various angles. The geometric phase varies in a regular nonlinear way, where the center of its variation increases constantly with time. This consequence is due to the effects of the periodic wave collapse and expansion on the evolution of the geometric phase. Harmonization of such a geometric-phase evolution with the dynamical phase makes the total phase evolve with a unique pattern that depends on the degree of nonstaticity. The total phase exhibits a peculiar behavior for the case of extreme nonstaticity, which is that it precipitates periodically in its evolution, owing to a strong response of the geometric phase to the wave nonstaticity. It is confirmed that the geometric phase in the coherent state is mostly more prominent compared to that in the Fock states. For a simple case where the wave nonstaticity disappears, our description of the geometric phase recovers to the well-known conventional one which no longer undergoes periodical change. While the familiar dynamical phase is just related to the expectation value of the Hamiltonian, the geometric phase that we have managed reflects a delicate nonstaticity difference in the evolution of quantum states.
- P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A 133(821), 60–72 (1931). DOI: 10.1098/rspa.1931.0130.
- T. V. Mechelen and Z. Jacob, “Photonic Dirac monopoles and skyrmions: spin-1 quantization,” Opt. Mater. Express 9(1), 95–111 (2019). DOI: 10.1364/OME.9.000095.
- M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984). DOI: 10.1098/rspa.1984.0023.
- W. Zhao and X. Wang, “Berry phase in quantum oscillations of topological materials,” Adv. Phys. X, 7(1), 2064230 (2022). DOI: 10.1080/23746149.2022.2064230.
- Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58(16), 1593–1596 (1987). DOI: 10.1103/PhysRevLett.58.1593.
- C. Bengs, M. Sabba, and M. H. Levitt, “The Aharonov–Anandan phase and geometric double-quantum excitation in strongly coupled nuclear spin pairs,” J. Chem. Phys. 158(12), 124204 (2023). DOI: 10.1063/5.0138146.
- N. Mukunda and R. Simon, “Quantum kinematic approach to the geometric phase. I. General formalism,” Ann. Phys. 228(2), 205–268 (1993). DOI: 10.1006/aphy.1993.1093.
- A.-B. A. Mohamed and I. Masmali, “Control of the geometric phase in two open qubit–cavity systems linked by a waveguide,” Entropy 22(1), 85 (2020). DOI: 10.3390/e22010085.
- L. Garza-Soto, N. Hagen, D. Lopez-Mago, and Y. Otani, “Differences between the geometric phase and propagation phase: clarifying the boundedness problem,” Appl. Opt. 63(3), 645–653 (2024). DOI: 10.1364/AO.510509.
- B. Simon, “Holonomy, the quantum adiabatic theorem, and Berry’s phase,” Phys. Rev. Lett. 51(24), 2167–2170 (1983). DOI: 10.1103/PhysRevLett.51.2167.
- K. Y. Bliokh, M. A. Alonso, and M. R. Dennis, “Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects,” Rep. Prog. Phys. 82(12), 122401 (2019). DOI 10.1088/1361-6633/ab4415.
- M. Maamache, “Ermakov systems, exact solution, and geometrical angles and phases,” Phys. Rev. A 52(2), 936–940 (1995). DOI: 10.1103/PhysRevA.52.936.
- J. Zhang, T. H. Kyaw, S. Filipp, L.-C. Kwek, E. Sjöqvist, and D. Tong, “Geometric and holonomic quantum computation,” Phys. Rep. 1027, 1–53 (2023). DOI: 10.1016/j.physrep.2023.07.004.
- G. F. Xu and D. M. Tong, “Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems,” AAPPS Bull. 32(1), 13 (2022). DOI: 10.1007/s43673-022-00043-6.
- Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017). DOI: 10.1515/odps-2017-0010.
- J. Lee, Y. Kim, K. Choi, J. Hahn, S.-W. Min, and H. Kim, “Digital incoherent compressive holography using a geometric phase metalens,” Sensors 21(16), 5624 (2021). DOI: 10.3390/s21165624.
- J. R. Choi, “On the possible emergence of nonstatic quantum waves in a static environment,” Nonlinear Dyn. 103(3), 2783–2792 (2021). DOI: 10.1007/s11071-021-06222-8.
- J. R. Choi, “Effects of light-wave nonstaticity on accompanying geometric-phase evolutions,” Opt. Express 29(22), 35712–35724 (2021). DOI: 10.1364/OE.440512.
- J. R. Choi, K. H. Yeon, I. H. Nahm, and S. S. Kim, “Do the generalized Fock-state wave functions have some relations with classical initial condition?” Pramana-J. Phys. 73(5), 821–828 (2009). DOI: 10.1007/s12043-009-0150-4.
- J. R. Choi, “Analysis of light-wave nonstaticity in the coherent state,” Sci. Rep. 11, 23974 (2021). DOI: 10.1038/s41598-021-03047-8.
- A. Mostafazadeh, “Quantum adiabatic approximation, quantum action, and Berry’s phase,” Phys. Lett. A 232(6), 395–398 (1997). DOI: 10.1016/S0375-9601(97)00391-5.
- G. McCaul, A. Pechen, and D. I. Bondar, “Entropy non-conservation and boundary conditions for Hamiltonian dynamical systems,” Phys. Rev. E 99(6), 062121 (2019). DOI: 10.1103/PhysRevE.99.062121.
- O. V. Usatenko, J.-P. Provost, and G. Valle´´e\acute{\rm e}over´ start_ARG roman_e end_ARGe, “A comparative study of the Hannay’s angles associated with a damped harmonic oscillator and a generalized harmonic oscillator,” J. Phys. A 29(10), 2607–2610 (1996). DOI 10.1088/0305-4470/29/10/035.
- J. Y. Zeng and Y. A. Lei, “Connection between the Berry phase and the Lewis phase,” Phys. Lett. A 215(5-6), 239–244 (1996). DOI: 10.1016/0375-9601(96)00254-X.
- P. Martin-Dussaud, “Searching for coherent states: From origins to quantum gravity,” Quantum 5, 390 (2021). DOI: 10.22331/q-2021-01-28-390.
- R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131(6), 2766–2788 (1963). DOI: 10.1103/PhysRev.131.2766.
- W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states and interference in phase space,” Nature 326(6113), 574–577 (1987). DOI: 10.1038/326574a0.
- R. Lynch, “Simultaneous fourth-order squeezing of both quadrature components,” Phys. Rev. A 49(4), 2800–2805 (1994). DOI: 10.1103/PhysRevA.49.2800.
- Y. Wang, H. Ye, Z. Yu, Y. Liu, and W. Xu, “Sub-Poissonian photon statistics in quantum dot-metal nanoparticles hybrid system with gain media,” Sci. Rep. 9, 10088 (2019). DOI: 10.1038/s41598-019-46576-z.
- N. E. Gürbüz, “Three geometric phases with the visco-Da Rios equation for the hybrid frame in R13superscriptsubscript𝑅13R_{1}^{3}italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” Optik 248, 168116 (2021). DOI: 10.1016/j.ijleo.2021.168116.
- H. Kuratsuji and S. Iida, “Effective action for adiabatic process: dynamical meaning of Berry and Simon’s phase,” Prog. Theor. Phys. 74(3), 439–445 (1985). DOI: 10.1143/PTP.74.439.
- L. Koens and E. Lauga, “Geometric phase methods with Stokes theorem for a general viscous swimmer,” J. Fluid Mech. 916, A17 (2021). DOI: 10.1017/jfm.2021.181.
- P. C. Deshmukh, S. Ghosh, U. Kumar, C. Hareesh, and G. Aravind, “A primer on path integrals, Aharonov–Bohm effect and the geometric phase,” Phys. Educ. 4(1), 2250005 (2022). DOI: 10.1142/S2661339522500056.
- S. N. Biswas and S. K. Soni, “Berry’s phase for coherent states and canonical transformation,” Phys. Rev. A 43(10), 5717–5719 (1991). DOI: 10.1103/PhysRevA.43.5717.
- J. Grain and V. Vennin, “Canonical transformations and squeezing formalism in cosmology,” J. Cosmol. Astropart. Phys. 2020(2), 022 (2020). DOI 10.1088/1475-7516/2020/02/022.
- S. Chaturvedi, M. S. Sriram, and V. Srinivasan, “Berry’s phase for coherent states,” J. Phys. A: Math. Gen. 20(16), L1071–L1075 (1987). DOI 10.1088/0305-4470/20/16/007.
- J. R. Choi, “Quadrature squeezing and geometric-phase oscillations in nano-optics,” Nanomaterials 10(7), 1391 (2020). DOI: 10.3390/nano10071391.
- W. Ding and Z. Wang, “‘Classical’ coherent state generated by curved surface,” New J. Phys. 24, 113002 (2022). DOI 10.1088/1367-2630/ac9a9e.
- E. Munguía-González, S. Rego, and J. K. Freericks, “Making squeezed-coherent states concrete by determining their wavefunction,” Am. J. Phys. 89(9), 885–896 (2021). DOI: 10.1119/10.0004872.
- C. P. Jisha, S. Nolte, and A. Alberucci, “Geometric phase in Optics: from wavefront manipulation to waveguiding,” Laser Photonics Rev. 15(10), 2100003 (2021). DOI: 10.1002/lpor.202100003.
- I. L. Paiva, R. Lenny, and E. Cohen, “Geometric phases and the Sagnac effect: foundational aspects and sensing applications,” Adv. Quantum Technol. 5(2), 2100121 (2022). DOI: 10.1002/qute.202100121.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.