Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

A robust balancing mechanism for spiking neural networks (2401.12559v1)

Published 23 Jan 2024 in cond-mat.dis-nn and q-bio.NC

Abstract: Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in absence of strong external currents. Biologically, the mechanism exploits the plasticity of excitatory-excitatory synapses induced by short-term depression. Mathematically, the nonlinear response of the synaptic activity is the key ingredient responsible for the emergence of a stable balanced regime. Our claim is supported by a simple self-consistent analysis accompanied by extensive simulations performed for increasing network sizes. The observed regime is essentially fluctuation driven and characterized by highly irregular spiking dynamics of all neurons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. C. van Vreeswijk and H. Sompolinsky, Science 274, 1724 (1996).
  2. D. Sherrington and S. Kirkpatrick, Physical review letters 35, 1792 (1975).
  3. S. Kirkpatrick and D. Sherrington, Physical Review B 17, 4384 (1978).
  4. M. Antoni and S. Ruffo, Physical Review E 52, 2361 (1995).
  5. T. Konishi and K. Kaneko, Journal of Physics A: Mathematical and General 23, L715 (1990).
  6. A. T. Winfree, The Geometry of Biological Time, 2nd ed., Interdisciplinary Applied Mathematics, Vol. 12 (Springer-Verlag New York, 2001).
  7. S. H. Strogatz and I. Stewart, Scientific american 269, 102 (1993).
  8. A. Pikovsky and M. Rosenblum, Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097616 (2015).
  9. L. F. Abbott and C. Van Vreeswijk, Physical Review E 48, 1483 (1993).
  10. C. van Vreeswijk, Physical Review E 54, 5522 (1996).
  11. H. Haken, Brain dynamics: synchronization and activity patterns in pulse-coupled neural nets with delays and noise (Springer Science & Business Media, 2006).
  12. X.-J. Wang and G. Buzsáki, Journal of neuroscience 16, 6402 (1996).
  13. S. Luccioli and A. Politi, Phys. Rev. Lett. 105, 158104 (2010).
  14. E. Ullner and A. Politi, Physical Review X 6, 011015 (2016).
  15. W. R. Softky and C. Koch, Journal of neuroscience 13, 334 (1993).
  16. A. Destexhe and D. Paré, Journal of neurophysiology 81, 1531 (1999).
  17. R. M. Bruno and B. Sakmann, Science 312, 1622 (2006).
  18. M. N. Shadlen and W. T. Newsome, Current opinion in neurobiology 4, 569 (1994).
  19. N. Brunel and V. Hakim, Neural computation 11, 1621 (1999).
  20. J. Barral and A. D. Reyes, Nature neuroscience 19, 1690 (2016).
  21. M. Monteforte and F. Wolf, Phys. Rev. Lett. 105, 268104 (2010).
  22. A. Litwin-Kumar and B. Doiron, Nat Neurosci 15, 1498 (2012).
  23. J. Kadmon and H. Sompolinsky, Phys. Rev. X 5, 041030 (2015).
  24. R. Rosenbaum and B. Doiron, Physical Review X 4, 021039 (2014).
  25. R. Pyle and R. Rosenbaum, Physical Review E 93, 040302 (2016).
  26. M. di Volo and A. Torcini, Phys. Rev. Lett. 121, 128301 (2018).
  27. Y. Ahmadian and K. D. Miller, Neuron 109, 3373 (2021).
  28. S. Chung and D. Ferster, Neuron 20, 1177 (1998).
  29. A. D. Lien and M. Scanziani, Nature neuroscience 16, 1315 (2013).
  30. M. Tsodyks and S. Wu, Scholarpedia 8, 3153 (2013).
  31. M. V. Tsodyks and H. Markram, Proceedings of the national academy of sciences 94, 719 (1997).
  32. R. E. Mirollo and S. H. Strogatz, SIAM Journal on Applied Mathematics 50, 1645 (1990).
  33. A. N. Burkitt, Biological cybernetics 95, 1 (2006).
  34. B. Ermentrout, Neural computation 8, 979 (1996).
  35. The parameters are set as follows. Each neuron has a probability of 10% to be connected to any other neuron, to guarantee that 80% (20%) of these connections are excitatory (inhibitory) as in the cortex we set pe=0.08superscript𝑝𝑒0.08p^{e}=0.08italic_p start_POSTSUPERSCRIPT italic_e end_POSTSUPERSCRIPT = 0.08 (pi=0.02superscript𝑝𝑖0.02p^{i}=0.02italic_p start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT = 0.02). For the STD parameters we set u=0.5𝑢0.5u=0.5italic_u = 0.5 (a single spike emission halves the synaptic resources) and τd=1subscript𝜏𝑑1\tau_{d}=1italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 1 s. The overall coupling strength has been fixed to G=1𝐺1G=1italic_G = 1. For the ZI⁢(ϕ)subscript𝑍Iitalic-ϕZ_{\rm I}(\phi)italic_Z start_POSTSUBSCRIPT roman_I end_POSTSUBSCRIPT ( italic_ϕ ) (ZLIF⁢(ϕ)subscript𝑍LIFitalic-ϕZ_{\rm LIF}(\phi)italic_Z start_POSTSUBSCRIPT roman_LIF end_POSTSUBSCRIPT ( italic_ϕ )) PRC we considered synapses with α−1=0.2superscript𝛼10.2\alpha^{-1}=0.2italic_α start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = 0.2 ms (α−1=0.04superscript𝛼10.04\alpha^{-1}=0.04italic_α start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = 0.04 ms).
  36. In our case, the inhibitory field is equal to the excitatory field.
  37. G. Buzsáki and K. Mizuseki, Nature Reviews Neuroscience 15, 264 (2014).
  38. S. Romani and M. Tsodyks, Hippocampus 25, 94 (2015).
  39. D. Hansel and G. Mato, Journal of Neuroscience 33, 133 (2013).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube