Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Stochastic Dynamic Power Dispatch with High Generalization and Few-Shot Adaption via Contextual Meta Graph Reinforcement Learning (2401.12235v1)

Published 19 Jan 2024 in cs.LG, cs.SY, and eess.SY

Abstract: Reinforcement learning is an emerging approaches to facilitate multi-stage sequential decision-making problems. This paper studies a real-time multi-stage stochastic power dispatch considering multivariate uncertainties. Current researches suffer from low generalization and practicality, that is, the learned dispatch policy can only handle a specific dispatch scenario, its performance degrades significantly if actual samples and training samples are inconsistent. To fill these gaps, a novel contextual meta graph reinforcement learning (Meta-GRL) for a highly generalized multi-stage optimal dispatch policy is proposed. Specifically, a more general contextual Markov decision process (MDP) and scalable graph representation are introduced to achieve a more generalized multi-stage stochastic power dispatch modeling. An upper meta-learner is proposed to encode context for different dispatch scenarios and learn how to achieve dispatch task identification while the lower policy learner learns context-specified dispatch policy. After sufficient offline learning, this approach can rapidly adapt to unseen and undefined scenarios with only a few updations of the hypothesis judgments generated by the meta-learner. Numerical comparisons with state-of-the-art policies and traditional reinforcement learning verify the optimality, efficiency, adaptability, and scalability of the proposed Meta-GRL.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com