Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Recognition of Learning Resource Category in a Digital Library (2401.12220v1)

Published 28 Nov 2023 in cs.DL and cs.CV

Abstract: Digital libraries often face the challenge of processing a large volume of diverse document types. The manual collection and tagging of metadata can be a time-consuming and error-prone task. To address this, we aim to develop an automatic metadata extractor for digital libraries. In this work, we introduce the Heterogeneous Learning Resources (HLR) dataset designed for document image classification. The approach involves decomposing individual learning resources into constituent document images (sheets). These images are then processed through an OCR tool to extract textual representation. State-of-the-art classifiers are employed to classify both the document image and its textual content. Subsequently, the labels of the constituent document images are utilized to predict the label of the overall document.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (3)

Summary

We haven't generated a summary for this paper yet.